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ABSTRACT A constrained back propagation neural network (C-BPNN) model for standard penetration test based soil
liquefaction assessment with global applicability is developed, incorporating existing knowledge for liquefaction
triggering mechanism and empirical relationships. For its development and validation, a comprehensive liquefaction data
set is compiled, covering more than 600 liquefaction sites from 36 earthquakes in 10 countries over 50 years with 13
complete information entries. The C-BPNN model design procedure for liquefaction assessment is established by
considering appropriate constraints, input data selection, and computation and calibration procedures. Existing empirical
relationships for overburden correction and fines content adjustment are shown to be able to improve the prediction
success rate of the neural network model, and are thus adopted as constraints for the C-BPNNmodel. The effectiveness of
the C-BPNNmethod is validated using the liquefaction data set and compared with that of several liquefaction assessment
methods currently adopted in engineering practice. The C-BPNN liquefaction model is shown to have improved
prediction accuracy and high global adaptability.
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1 Introduction

Consequences of soil liquefaction, such as sand boiling
and ejecta, loss of soil strength, lateral spreading, and
ground settlement and upheaval, are a major source of
seismic hazard [1–4]. Accurate assessment and prediction
of liquefaction is an important issue in geotechnical
engineering, especially in seismically active areas. Stan-
dard penetration tests (SPT) have long been used to
develop various prediction methods based on liquefaction
case histories. Although recent developments in cone
penetration test (CPT) technology has promoted its use in
liquefaction assessment [5,6], SPT is still widely used in
many parts of the world due to its simplicity, cost
efficiency, and accumulation of historic data [7,8],
especially in China and Japan. SPT based liquefaction
assessment methods can generally be divided into two
categories: traditional simplified semi-empirical methods,

including the liquefaction cyclic resistance method [9,10],
the liquefaction safety factor method [11–13], and the
critical SPT-N method [14,15]; data-driven statistical and
machine learning methods, such as artificial neural
network methods [16,17], decision tree methods [18],
support vector machine methods [19,20], and logistic
regression methods [21–23]. Data-driven methods are
more effective in establishing complicated nonlinear
relationships between liquefaction and various factors,
and can provide more effective use of available data.
Currently, one limitation of existing data-driven meth-

ods is that they have mostly been derived from a single
earthquake event or very limited number of earthquakes,
lacking more general validation and application
[18,19,22]. While there are several existing SPT liquefac-
tion data sets, the application of these data sets in
developing highly adaptable data-driven liquefaction
assessment methods need to resolve issues related to
consistency of parameter selection and data coverage. For
example, current datasets used in various regions are oftenArticle history: Received Nov 7, 2019; Accepted Mar 14, 2020
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highly biased in data origin and could lead to applicability
issues when used in different regions, restricting their
global adaptability [24–26]. Recently, there have been
several collaborative efforts in developing liquefaction
related databases, including the Next-Generation Lique-
faction (NGL) [27,28] and the “LiqChina” liquefaction
case history database [29].
Within the data-driven methods, use of back propagation

neural network (BPNN) has high application potential for
liquefaction assessment with strong learning ability, high
classification accuracy, and sufficient approximation for
complex nonlinear relationships [30–32]. However, the
prediction accuracy and consistency of existing BPNN
liquefaction assessment methods are significantly limited
by data selection and parameter calibration. For instance,
the data used for liquefaction manifestation prediction and
model training are often from the same origin and limits the
evaluation of the true predictive power of the methods
[33,35]. The neural network design procedure and
determination of model parameters often rely heavily on
experience [35]. In addition, well established understand-
ings of liquefaction triggering mechanism and empirical
relationships are not fully utilized [15,33,34]. It has been
shown that incorporation of prior knowledge in neural
networks can improve its performance, often referred to as
feature engineering [36–39]. One way of incorporating
prior knowledge in neural networks is as constraints during
input to guide the training process, and has been proven to
be effective [40].
This study aims to establish a globally applicable

constrained back propagation neural network (C-BPNN)
model for SPT based soil liquefaction assessment,
incorporating considerations for liquefaction triggering
mechanism and empirical relationships. A comprehensive
liquefaction data set for neural network training, valida-
tion, and evaluation is compiled, covering more than 600
liquefaction sites from 36 earthquakes in 10 countries over
50 years with 13 information entries. A C-BPNN model
design procedure for liquefaction assessment is developed
by considering appropriate constraints, input, and compu-
tation and calibration procedures. The adaptability of the
C-BPNN method in various regions of the world is
validated using the compiled liquefaction data set and
compared with that of several liquefaction assessment
methods widely adopted in engineering practice.

2 Compilation of a comprehensive
liquefaction case history SPT data set

To develop a high adaptability data-driven SPT based
liquefaction assessment method, a comprehensive lique-
faction case history SPT data set is first compiled. Several
data sets have been compiled in the past for liquefaction

assessment, including Cetin et al. [24], Boulanger and
Idriss [41], Idriss and Boulanger [25], and Xie [42], which
are adopted and merged in this study to form the basics of
the current data set. Liquefaction case history data from
several major earthquakes from the past two decades are
also gathered and added to the data set, mainly including
the 1999 Chi-Chi earthquake [8,43], the 1999 Kocaeli
earthquake [44,45], the 2003 Bachu earthquake [46,47],
the 2010 Haiti earthquake [48–50], the 2010 Chile
earthquake [7,51–53], and the 2011 Tohoku earthquake
[54–56].
Thirteen data entries are collected for each site,

including: earthquake magnitude (Mw), earthquake type
(ET), peak ground acceleration (amax), critical depth (ds),
groundwater level (dw), effective stress (�

0
v), total stress

(�v ), SPT value (SPT-N), fines content (FC), clay content
(CC), average particle size (D50), soil type (ST), and
whether liquefaction manifestation occurs. The earthquake
type (ET) considers combinations of earthquake mechan-
ism (intraplate earthquakes, interplate earthquakes, and
subduction-zone earthquakes) and time distribution (iso-
lated-shock, double-shock, main-shock, and multi-shock).
Soil types (ST) include clean sands (S), sands with fines
(SF), silty sands, sand-silt mixture (SM) and silts and very
fine sands, silty of clayey fine sands or clayey silts with
slight plasticity (ML). The liquefaction critical layer at each
site is determined as the layer of liquefiable soil type,
within the immediate vicinity of the minimum SPT-N value
where SPT-N values do not exceed 1.5 times that of the
minimum value.
When compiling the data set, case histories with more

than two missing data entries are eliminated, the missing
entries for each site is completed using the random forest
algorithm [57]. When using the random forest algorithm,
the data without the missing entry are used in training for
prediction, and the input entries are all transformed into
numbers following the description in Fig. 1 and normal-
ized. The number of trees, node size, and split are
optimized for best performance. Note that (Nl)60 is not
available in the data set of Xie [42]. Thus, Nl is used here as
an approximation to (Nl)60. A comprehensive liquefaction
data set covering more than 600 liquefaction sites from 36
earthquakes in 10 countries over 50 years is ultimately
established, with Table 1 showing an overview of the data
set.
Compared with existing liquefaction data sets com-

monly used in liquefaction assessment [24,25,41,42], the
data set compiled in this study expands in data volume and
coverage, evident from Table 2. The number of liquefac-
tion case histories in this data set is 2–3 times that of
existing liquefaction data sets. The number of data entries
is increased to 13, from 9 or 10. There is a noticeable
expansion in the data coverage, especially for the critical
depth, cyclic stress ratio and earthquake magnitude. In
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Table 1 An overview of the liquefaction data set compiled in this study

label year country earthquake number

alla) liqb) non-liqc)

1 1962 China Heyuan 1 0 1

2 1966 Xingtai (Mar 8) 8 4 4

3 1966 Xingtai (Mar 22) 7 7 0

4 1967 Hejian 2 2 0

5 1969 Bohai 5 5 0

6 1969 Yangjiang 4 3 1

7 1970 Tonghai 32 17 15

8 1975 Haicheng 16 10 6

9 1976 Tangshan 99 60 39

10 1999 Chi-Chi 82 55 27

11 2003 Bachu 47 21 25

12 1944 Japan Tohnankai 3 3 0

13 1948 Fukui 2 2 0

14 1964 Niigata 12 8 4

15 1968 Hososhima 1 0 1

16 1968 Tokachi-Oki 5 3 2

17 1978 Miyagiken-Oki
(Feb 20)

14 1 13

18 1978 Miyagiken-Oki
(Jun 12)

20 14 6

19 1980 Mid-Chiba 2 0 2

20 1982 Urakawa-Oki 1 0 1

21 1983 Nihonkai-Chubu 32 17 15

22 1984 Hososhima 1 0 1

23 1995 Kobe 54 25 29

24 2011 Tohoku 55 49 6

25 1971 USA San Fernando 2 2 0

26 1979 Imperial Vally 9 4 5

27 1987 Superstition Hills 12 1 11

28 1989 Loma Prieta 25 16 9

29 1994 Northridge 4 3 1

30 1976 Guatemala Guatemala 3 2 1

31 1977 Argentina Argentina 5 3 2

32 1981 Britain West Morland 7 3 4

33 1990 Philippines Luzon 3 2 1

34 1999 Turkey Kocaeli 14 12 2

35 2010 Haiti Haiti 13 11 2

36 2010 Chile Chile 15 12 3

total 617 377 240

Note: a) all = all cases including liquefaction and non-liquefaction sites; b) liq = liquefaction sites; c) non-liq = non-liquefaction sites.
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addition, some liquefaction case histories with critical
depth less than 2 m or more than 15 m, fines content over
35% (non-plastic), and magnitude over 7.8 are added
through additional data from recent earthquakes. Compar-
ison of the data source regional distribution in various data
sets shows the new data set has a wider distribution with
emphasis on Chinese case histories. The datasets of Cetin
00 [24] and BI 14 [41] are mostly from Japan and USA and
have very few data points from China, while the data in Xie
84 [42] is mostly from China with limited coverage of
USA case histories. Therefore, use of the dataset compiled
in this study is expected to improve the global adaptability
of the outcome liquefaction assessment method.
The distribution of each data entry within the data set is

elaborately illustrated in Fig. 1. In regard to seismic
conditions, the magnitude distributes in the range of Mw =
5.9–9.0, over 80% are within 6.5–8.0, suggesting that
although earthquakes with smaller magnitude are more
frequent, they cause fewer cases of liquefaction manifesta-
tion. The peak ground acceleration ranges from 0.05g to
0.84g, among which amax = 0.15g–0.40g are the main
components. The critical depth, groundwater level,
effective stress and total stress in the data set distribution
follow lognormal type patterns, and distribute within 0.5–
23.5 m, 0–9.6 m, 4.0–230.4 kPa, and 6.37–374.4 kPa,
respectively, with liquefaction mostly occurring in middle
and shallow layers at critical depth of 1–8 m and
groundwater level of 0–3 m. SPT-N value ranges from 1
to 99, and also exhibit lognormal distribution patterns.
Fines content ranges from 0 to 96%, clay content ranges
from 1 to 18%, and average particle size ranges from 0.015
to 2.4 mm in the data set. Liquefiable soils are mainly clean
sand and silty fine sand with SPT-N value smaller than 20,
and fines content are mostly less than 50%.

3 C-BPNN model for liquefaction
assessment

3.1 Basic concept of the C-BPNN model

BPNN is a computational network based on error back
propagation algorithm, which consists of neurons that
interact with each other through weighted interconnections
between three main network layers: the input, hidden and
output layers [30,32,58].
A C-BPNN model (Fig. 2) is established in this study

based on BPNN, to take into consideration existing
knowledge for liquefaction triggering mechanism and
empirical relationships. Existing knowledge is incorpo-
rated in the input layer along with the usual input data in
the C-BPNN model, constraining the relationship estab-
lished by the neural network. Here, input entries are
derived from in situ test, and they are the most basic
physical factors influencing liquefaction triggering.
whereas constraints are relationships of input entries,
which are derived from laboratory tests and practical
experience. In the C-BPNN model, the optimization of
input entries is sperate from the optimization of con-
straints. The basic physical factors are first evaluated to
obtain the optimal input entries, after which, constraints
based on existing knowledge are introduced and evaluated
to improve model performance. For example, one may
choose to use equivalent clean sand adjustment ΔðNlÞ60
determined from existing empirical relations as a constraint
to reflect the effect of non-plastic fines.

3.2 Model computation procedure

The effectiveness of C-BPNN model is influenced by the

Table 2 Comparison between the data set in this study and three existing data sets

data sets Cetin 00 BI 14 Xie 84 this paper

liquefaction cases 109 135 125 377

non-liquefaction cases 88 115 76 240

data entries 9 10 9 13

critical depth (m) 1.1–20.5 1.8–14.3 0.5–18.5 0.5–23.5

effective stress (kPa) 8.1–198.7 20.3–170.9 4.3–185.5 4.0–230.4

fines content (%) 0–92 0–92 – 0–96

Nl (60cs) 2.2–66.1 4.6–63.7 1.4–66.0 1–69

cyclic stress ratio 0.05–0.66 0.04–0.69 0.04–0.78 0.03–0.84

magnitude 5.9–8.0 5.9–8.3 6.3–7.8 5.9–9.0

data sources

China 9 21 174 303

Japan 144 147 24 202

USA 39 50 3 52

others 5 32 0 60
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Fig. 1 Data distribution of each information entry: (a) Mw; (b) amax; (c) ds; (d) dw; (e) sv; (f) sv́; (g) SPT-N; (h) FC; (i) ST; (j) CC;
(k) D50; (l) ET. Note: 1) Soil types (ST) include clean sands (1-S), sands with fines (2-SF), silty sands, sand-silt mixture (3-SM), and silts
and very fine sands, silty of clayey fine sands or clayey silts with slight plasticity (4-ML); 2) Earthquake type (ET) include combinations of
various earthquake mechanisms (1-intraplate earthquakes, 2-interplate earthquakes and 3-subduction-zone earthquakes) and time
distributions (1-isolated-shock, 2-double-shock, 3-main-shock, and 4-multi-shock). The correspondence of labels in Fig. 1(l) with
earthquake mechanisms and time distributions are: 1 = 1-1, 2 = 1-2, 3 = 1-3, 4 = 1-4; 5 = 2-1, 6 = 2-2, 7 = 2-3; 8 = 2-4; 9 = 3-1, 10 = 3-2,
11 = 3-3, 12 = 3-4. 3. ‘< a

’ in (e) indicates sv> 300 kPa, ‘< b
’ in (f) indicates sv́> 200 kPa, ‘< c

’ in (g) indicates SPT-N> 40, ‘< d
’ in

(h) indicates FC> 50%, and ‘< e
’ in (k) indicates D50> 0.55 mm.



architecture layout, output function, and learning algo-
rithm. The architecture layout is determined by the number
of layers and the number of neurons in each layer. A three-
layer model with one output is adopted here in accordance
to existing studies [19,33,35]. The number of neurons in
the input layer depends on the number of input data entries,
and the number of neurons in the hidden layer is a
parameter that requires determination. Three types of
activation function can be used in the output layer: Log-
Sigmoid, Tan-Sigmoid or Purelin [30]. Log-Sigmoid
function is adopted, with output value within the range
of 0–1, concentrated mainly at 0 and 1, where 0
corresponds to non-liquefaction and 1 corresponds to
liquefaction.
To improve the training efficiency and ensure the best

learning rate during the network training process, a self-
adaptive adjustment learning rate algorithm is adopted
based on a batch gradient descent (BGD) method [59,60].
A momentum term is also introduced in order to orient the
error objective function gradient to the center of the error
surface [60,61].
The computation procedure for the C-BPNN liquefac-

tion assessment model is established as follows.
1) Input sample matrix P = (P1,…,Pk,…,Pm) (including

constraint conditions) and corresponding target output
sample T = (t1,…,tk,…,tm) are provided to the network with
Pk = (a1,a2,…,an) and Tk = (tk) being the input and output
of the kth sample, where m is the number of input samples
and n is the number of input data entries.
2) The inputs Sk = (s1,s2,…,sp), Lk = (l) and outputs

Bk = (b1,b2,…,bp), Ok = (o) of the hidden and output

layers are calculated as:

sj ¼
Xn
i¼1

wijai – �j, bj ¼ f ðsjÞ ¼ logsigðsjÞ,

l ¼
Xp
j¼1

vjbj –g, o ¼ f ðlÞ ¼ logsigðlÞ, (1)

where wij, qj, and vj, γ (i = 1,2,…,n, j = 1,2,…,p, with p
being the number of hidden neurons) are the connection
weights and threshold values of input-hidden layer and
output-hidden layer, respectively.
3) Error correction terms dk and ej

k in output layer and
hidden layer can be determined through the following
formula:

dk ¼ ðt – oÞ⋅oð1 – oÞ,

ekj ¼ dkvj⋅bjð1 – bjÞ, ðj ¼ 1,2,:::,pÞ (2)

4) The connection weights wij, qj and threshold values
vj, γ are then corrected accordingly:

vj N þ 1ð Þ ¼ vj Nð Þ þ α⋅
1

m

Xm
k¼1

dk⋅bj þ β⋅Δvj Nð Þ,

g N þ 1ð Þ ¼ g Nð Þ þ α⋅
1

m

Xm
k¼1

dk þ β⋅Δg Nð Þ,

wj N þ 1ð Þ ¼ wj Nð Þ þ α⋅
1

m

Xm
k¼1

ekj ⋅a
k
j þ β⋅Δwj Nð Þ,

�j N þ 1ð Þ ¼ �j Nð Þ þ α⋅
1

m

Xm
k¼1

ekj þ β⋅Δ�j Nð Þ,

(3)

where α is the learning rate, β is the momentum factor, and
N is the number of iteration step. The self-adaptive
adjustment learning rate algorithm can be described as:

αðN þ 1Þ ¼
1:05⋅αðNÞ,EðN þ 1Þ < EðNÞ,
αðNÞ,EðNÞ£EðN þ 1Þ£1:04EðNÞ,
0:7⋅αðNÞ,EðN þ 1Þ > 1:04EðNÞ,

8><
>: (4)

where E(N) is the global error after the Nth iteration.
5) Process (1) to (4) is repeated for each sample.
6) Check for convergence determined by the error

objective function. The network converges when the
global error E is smaller than the error tolerance ε. If
convergence is not achieved, iteration of process (1) to (6)
is carried out.
Under this computation procedure, the design for the C-

BPNN liquefaction assessment model requires considera-
tions for model parameter selection, input data set
selection, and constraint selection, which will be discussed
in following subsections.

Fig. 2 Structure of the constrained BPNN (C-BPNN)model. Note:
Pk is the input data, Tk is the target output, Sk and Bk are the input and
output of hidden layer, Lk and Ok are the input and output of output
layer, where k is the label of input sample with k = 1,2,…,m,
and m is the number of input samples. wij, qj and vj, γ (i = 1,2,…,n,
j = 1,2,…,p) are the connection weights and thresholds of input-
hidden layer and hidden-output layer, respectively, where n is the
number of input entries and p is the number of hidden neurons.
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3.3 Model parameter selection

K-fold cross validation is adopted to determine the optimal
model parameters. The input sample data P (learning
samples other than test set) is evenly divided into 5 subsets,
which are used 5 times to train and validate the C-BPNN
model (Fig. 3). For each case in Fig. 3, 4 subsets are used
as training sets while the remaining subset serves as the
validation set. Subsequently, the model error Egeneral can be
calculated by averaging the errors of all 5 cases (E1, E2, E3,
E4, E5). The model parameters are hence chosen to
minimize Egeneral value.
For the C-BPNN model, model parameters include the

number of hidden neurons (p), learning rate (α), and
momentum factor (β), for given error tolerance and
iteration step values, which are here 1% and 10000,
respectively. Hidden neuron number p ranging from 1 to
15, initial learning rate a ranging from 0 to 1, and
momentum factor β ranging from 0 to 1 are used to
optimize the performance of the model. The prediction
success rate (PSR) is adopted to evaluate model perfor-
mance, which is the number of correctly predicted sites, in
terms of liquefaction manifestation or no liquefaction
manifestation, divided by the number of sites [62]. The
process of model parameter selection is presented here for
a typical set of input layer data.
Figure 4 shows the influence of β value on PSR for

various combinations of hidden neuron number (p) and
learning rate (α), for liquefaction sites, non-liquefaction
sites, and all sites, respectively. The results show that the
choice of momentum factors β has little influence on PSR,
and thus a value of 0.9 is adopted in this study based on
recommendation from previous studies [63].
Figure 5 shows the influence of learning rate α on C-

BPNN model performance (β = 0.9). When α is greater
than 0.1, it has limited influence on model performance.
When the learning rate is too small (i.e., α< 10–5), the
model does not converge within 10000 iterations. The best
model performance is achieved when α is around 0.01.

The number of hidden neurons (p) determines the
structure of the model. The influence of p on model
performance is shown in Fig. 6. Egeneral within 5% is
achieved when p is between 5 and 9. Within p of 5 to 9,
best overall PSR is achieved at p = 7.

3.4 Model input layer determination

The data and constraints used in the C-BPNN model
ultimately determines its accuracy and adaptability. The
input data set selection and constraint selection are
discussed here. Note that both the input data sets and
constraints are pre-processed by normalizing with z-score
prior to the computation procedure [64].

3.4.1 Input data set selection

The data set compiled in this study has 12 data entries for
each site (Mw, amax, ET, ds,dw, �

0
v, �v , SPT-N, FC, CC,D50,

ST), excluding the information on whether liquefaction
manifestation occurs, from 671 sites. The choice of data
entry used as input data and sites used in model training is
an important issue. Table 3 shows the three input entry
combinations investigated in this study: the 8-entry
combination covering basic information of seismic condi-
tions, site conditions, and soil properties; the 11-entry
combination with additional information for soil property;
and the 12-entry combination incorporating earthquake
type. A subset of sites selected as input sample data for
training of the C-BPNN model (i.e., training set and
validation set) is referred to a “basic dataset”, the rest of the
data from the entire data set serve as “test dataset”. This
sub-data set should be able to have good coverage of the
overall characteristics of the entire liquefaction data set,
with as few sites as possible. Five representative basic data
sets with various important features (Table 4) are selected
and compared.
Figure 7 compares the model performance for the input

data sets with different input entry combinations and basic

Fig. 3 Illustration of the process of 5-fold cross validation.
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data sets. The 8-entry combination for input data shows
good overall performance. The extra information provided
for the other two data entry combinations is not able to
significantly and consistently improve the performance of
the model, and may even hinder model performance in
certain cases. For the 8-entry input data, basic data set-1
and basic data set-3 exhibit the highest overall PSR.
Greater PSR is achieved for liquefaction sites using basic
data set-3 while greater PSR is achieved for non-
liquefaction sites using basic data set-1. Basic data set-3
has 55 more sites than basic data set-1, and there are 2.43
times as many liquefaction sites as non-liquefaction sites in
basic data set-3. Therefore, considering the data amount
and bias, the 8-entry basic data set-1 is selected for model
training.

3.4.2 Constraint selection

Using the aforementioned input data entries alone does not
allow for the incorporation of existing knowledge on
liquefaction triggering in the neural network model.
Accumulated knowledge from laboratory tests and empiri-

cal relationships used in simplified liquefaction assessment
methods [9,25,41,65–72] can potentially aid the perfor-
mance of the model, which can be used as constraints in the
model input layer. Five potential constraints are explored
in this study, including: the stress reduction coefficient γd,
the magnitude scaling factor MSF, the overburden
correction factor Ks, the overburden correction factor CN,
and the equivalent clean sand adjustment ΔðNlÞ60. The
roles of these constraints are briefly described in the
following, detailed formulations for these constraints can
be found in each respective reference.
The stress reduction coefficient γd is used to adjust the

maximum shear stress in soil for a site under a given
earthquake motion, reflecting the deformability of soil [9].
It is suggested to be dependent on ground motion, shear
wave velocity profile, and soil properties [65].
The magnitude scaling factor MSF is used to adjust the

cyclic resistance of soil under any earthquake magnitude
Mw [66], to that under Mw = 7.5. The MSF relationship
adopted here is modified and revised by Boulanger and
Idriss [41] based on currently available MSF relationships
[67,68].
The overburden correction factor Kα is used to reflect the

influence of effective overburden stress on the cyclic

Fig. 4 The influence of momentum factor β on C-BPNN
liquefaction assessment model: (a) PSR in liquefaction sites; (b)
PSR in non-liquefaction sites; (c) PSR in all sites. Note: The legend
shows parameters of the computation models. For simplicity, the
computation model with number of hidden neurons p = 3 and
learning rate α = 0.2 is abbreviated as 3-0.2 model.

Fig. 5 The influence of learning rate α on C-BPNN liquefaction
assessment model: (a) PSR in liquefaction sites; (b) PSR in non-
liquefaction sites; (c) PSR in all sites. Note: The numbers in the
legend indicate the number of hidden neurons.
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resistance of soil [66]. The relationship of Ks used here is
developed by Cetin et al. [68] and Idriss and Boulanger
[25].
SPT overburden correction factor CN is introduced to

normalize SPT-N values under different vertical effective
stress to an equivalent value at vertical effective stress of
101 kPa [66]. A number of different CN relationships have
been derived from SPT calibration chamber test results and
field data [25,69–71], and the relationship recommended
by Idriss and Boulanger [25] is adopted here.
Equivalent clean sand adjustment ΔðNlÞ60 is used to

adjust the SPT blow count N to that of clean sand with
consideration for the effects of fines content [25]. ΔðNlÞ60
expression developed by Idriss and Boulanger [25] is
adopted here, which has been examined using data from
recent earthquakes [41,65].
Evaluation of the effectiveness of the different con-

straints is conducted by implementing each alone or in
combination into the model. For generality, both the
optimal input data set 8-1 (8-entry basic data set-1) and the
input data set 8-3 (8-entry basic data set-3) are applied for
this evaluation process. The PSR for each scenario is
shown in Fig. 8, for liquefaction sites, non-liquefaction
sites, and all sites.
For both input data sets, constraints CN and ΔðNlÞ60 can

improved the prediction ability of the model to some
extent, in comparison to the case where no constraints are
used. γd, MSF, and Ks are shown to have mixed effects,
resulting in general in a lower overall PSR. Therefore, the
combined effect of overburden correction factor CN and
equivalent clean sand adjustment ΔðNlÞ60 is further
explored (Fig. 8). For input data set 8-1, a combination
of CN and ΔðNlÞ60 can further enhanced the PSR, for which
CN facilitates improved prediction performance in non-
liquefaction sites and ΔðNlÞ60 contributes to improved
prediction performance in liquefaction sites. It is worth
noting that, ΔðNlÞ60 cannot replace the original input entry
FC. If ΔðNlÞ60 is used to replace the original input entry FC
instead of supplementing input, the overall PSR decreases
significantly from 0.83 to 0.75.
Through the selection of model parameter, input data set,

and constraint condition, a 3-layer 7-hidden neuron
C-BPNN model with momentum factor of 0.9, learning
rate of 0.01 is established using an 8-entry basic data set-1
with CN and ΔðNlÞ60 as constraints for the final model.

4 Evaluation of the C-BPNN liquefaction
assessment model

4.1 Validation on a global scale

To validate the effectiveness of the C-BPNN model
developed in this study, it is used to conduct liquefaction
assessment for the entire data set compiled in Section 2. Its
performance is compared with that of several existing
liquefaction assessment methods commonly used in
engineering practice in various regions in the world,
including: a) the code for seismic design of buildings
method in China (CSDB01 and CSDB10) [73,74]; b) the
Tokimatsu and Yoshimi (T-Y) method [75] and the Japan
Road Association (JRA) method [13] in Japan; c) the
NCEER method [76] and Boulanger-Idriss (B-I14) method
[41] in USA.
Figure 9 shows the prediction results for all of the

liquefaction case histories in the data set compiled in this

Fig. 6 The influence of hidden neuron number p on C-BPNN
liquefaction assessment model: (a) PSR in liquefaction sites;
(b) PSR in non-liquefaction sites; (c) PSR in all sites; (d) the Egeneral

of C-BPNN liquefaction assessment models with different hidden
neuron number p.

Table 3 Different combinations of input data entry

combinations input entry characteristics

8-entry Mw, amax, ds, dw, sv, sv ´,
N, FC

basic information

11-entry + D50, CC, ST additional information
for soil property

12-entry + ET additional information
for earthquake type
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study (Table 1) for these seven methods. In Fig. 9, the
successfully predicted liquefaction and non-liquefaction
sites and unsuccessfully predicted liquefaction and non-
liquefaction sites are plotted in different shades of colors.
For the six existing methods, the prediction results are
significantly region biased. The T-Y, NCEER, and B-I14
methods show relatively good performance for the case
histories from Japan and USA, while not performing well
for case histories from China. The JRA method is
conservative for almost all case histories, with high rate
of unsuccessful predictions in non-liquefaction sites.
Although the Chinese methods (CSDB01 and CSDB10)
exhibit marginally better performance for Chinese case
histories, they perform poorly for case histories from the
rest of the world.
Compared with traditional methods (Fig. 9), the

C-BPNN method dramatically improves liquefaction
prediction capabilities on a global level. The prediction
accuracy of the C-BPNN model for the Japanese and USA
case histories are slightly better than that of the T-Y,
NCEER, and B-I14 methods, while the prediction results
are significantly better for Chinese case histories than all
existing methods (an increased PSR by 13% compared to
the average prediction of existing methods), illustrating the
high global adaptability of the proposed method. Espe-
cially, liquefaction in the 1999 Chi-Chi earthquake (label
10) is poorly predicted by existing methods, but is much

better predicted using the proposed C-BPNN method.
The PSR for liquefaction sites, non-liquefaction sites,

and all sites in the entire data set for the seven different
liquefaction assessment methods are plotted in Fig. 10. It
can be seen that the PSR for all sites is the highest for the
C-BPNN method, reaching 85%, compared to 80% of the
second highest B-I14 method and 73% of the lowest JRA
method. The PSR for liquefaction sites of C-BPNN is
slightly lower than only the JRA and CSDB-01 methods, at
89%, 97%, and 90%, respectively. The PSR for non-
liquefaction sites is drastically improved by the C-BPNN
method, reaching 78%, compared with 72% of the second
highest NCEER method and 36% of the lowest JRA
method. In general, the prediction accuracy has been
greatly improved, and the PSR for non-liquefaction sites,
all sites and liquefaction sites of C-BPNN are improved by
24%, 9%, and 1%, respectively, compared to the average
prediction of existing methods. The results presented in
Fig. 9 and Fig. 10 include the entire data set. If the basic
data set used in training is eliminated, the overall PSR for
all the remaining sites for the C-BPNN method is 84%,
only slightly lower.
Note that numerical tests on different initial values of

weight and threshold are also conducted, to verify that the
model is not sensitive to initialization, for values within the
range of -1 to 1. The model is also trained for many times,
to verify that the results are consistent.

Table 4 Basic information and main characteristics of 5 different basic data sets

basic
database

year country earthquake main characteristics

1 1966 China Xingtai (Mar 8) shallow ground liquefaction with small earthquake
magnitude

1966 China Xingtai (Mar 22) shallow ground liquefaction with medium magnitude

1976 China Tangshan medium ground liquefaction with large magnitude
(right-beneath-city type earthquake)

1978 Japan Miyagiken-Oki (Feb 20) medium ground liquefaction with small earthquake
magnitude

1978 Japan Miyagiken-Oki (Jun 12) medium ground liquefaction with medium earth-
quake magnitude

1989 USA Loma Prieta medium ground liquefaction with small earthquake
magnitude

1994 USA Northridge deep ground liquefaction with large acceleration

1995 Japan Hyogoken-Nambu (Kobe) gravel sand liquefaction with right-beneath-city type
earthquake

1999 Turkey Kocaeli high fines content

2 1968 Japan basic data set-1+ Tokachi-Oki shallow ground liquefaction with large earthquake
magnitude

3 2011 Japan basic data set-1+ Tohoku abundant liquefaction case histories

4 1981 UK basic data set-1+West Morland high fines content with small earthquake magnitude

5 1994 USA basic data set-1-Northridge deep ground liquefaction with large acceleration
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4.2 Validation for typical sites

Two typical boreholes from the 1999 Chi-Chi earthquake
[43], which are not within the basic data set used to train
the model, are selected as validations for typical sites for
the C-BPNN method (Fig. 11). The Chi-Chi earthquake is
a severe quake triggered by the rupture of a thrust fault
with a magnitude (Mw) of 7.6, and main shock that lasted
approximately 40 s resulting in extensive liquefaction [7].
For site 1, liquefaction at a typical borehole in Nantou
(Hole No. NT-BH-3) is predicted for peak ground
acceleration of 0.428g. There are two potential liquefiable
layer below groundwater level of 4 m: one is a medium
dense silty fine sand layer between 3–9.2 m, and the other
is a dense silty medium fine sand layer at 14–18 m.
According to prediction results, the C-BPNN method
successfully identified the first layer the liquefaction layer
(Fig. 11(a)), consistent with the other existing methods,
which has been confirmed during field investigation. Field
investigation did not show conclusive results that liquefac-
tion occurred in the second layer [7,41], and only the JRA
and T-Y methods predict liquefaction in this layer.
For site 2, a typical borehole in a non-liquefaction site in

Wufeng (Hole No.WF-BH-8) is predicted under the peak
ground acceleration of 0.789g. C-BPNN successfully
identifies it as non-liquefaction site while all traditional
methods identify the silty fine sand layer as a liquefaction
layer (Fig. 11 (b)). Although there may be debate to
whether liquefaction occurred at this site without mani-
festation [25], the prediction capability of the C-BPNN
method for liquefaction manifestation is undoubted.

4.3 Influence of various factors for liquefaction triggering

An advantage of the C-BPNN method is that it can be used
to evaluate the contribution of various factors to liquefac-
tion triggering through analysis of the weights for each
model input. The factors considered here include: seismic
conditions (Mw, amax, ET), site conditions (ds, dw, �

0
v, �v ),

and soil properties (SPT-N, FC, CC, D50, ST), covering the
12 data entries in the data set. According to the weight
distributions, wi of different factors is calculated as
expressed:

Fig. 7 Input data set selection for C-BPNN liquefaction assess-
ment method: (a) PSR in liquefaction sites; (b) PSR in non-
liquefaction sites; (c) PSR in all sites.

Fig. 8 Constraint selection of C-BPNN liquefaction assessment
method: (a) PSR in liquefaction sites; (b) PSR in non-liquefaction
sites; (c) PSR in all sites. Note: BPNN on the x-coordinate refers to
a model without any consideration of constraints. CN + ΔðNlÞ60
indicates the combination of constraints CN and ΔðNlÞ60.
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Fig. 9 Prediction of liquefaction case histories by different liquefaction assessment methods: (a) CSDB01 method; (b) CSDB10 method;
(c) T-Y method; (d) JRA method; (e) NCEER method; (f) B-I14 method; (g) C-BPNN method; (h) comparison of the number of sites
correctly predicted.
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wi ¼
Xn
j¼1

vj � wij=
Xm
i¼1

wij

 ! !
, (5)

where wij and vj are the connection weights of input-hidden
layer and output-hidden layer, respectively, which
are determined using the formulations in Section 3.2;
i = 1,2,…,m, j = 1,2,…,n, m and n are the number of input
neurons and hidden neurons, respectively.
The influence of various factors is analyzed using both

the 8-entry combination and 12-entry combination for
input data in Fig. 12. Soil properties are shown to be the
most important factor affecting liquefaction triggering,
with SPT-N value having the greatest contribution. Seismic
and site conditions show similar contributions to liquefac-
tion triggering, with the peak ground acceleration amax a
strongly influential factor. Site conditions of ds, dw, �

0
v, and

�v have similar contributions of around 6%–8%. These
findings are consistent with those by Hu et al. [77] based
on a Bayesian network, where liquefaction is found to be
most sensitive to soil properties.

5 Concluding remarks

Liquefaction assessment methods based on neural net-
works have a broad application prospect. This study
tackled several limitations of existing neural network-
based liquefaction assessment methods, including data bias
and incompleteness, and the limited use of existing
knowledge on liquefaction triggering. A C-BPNN lique-
faction assessment model incorporating existing knowl-
edge for liquefaction triggering mechanism and empirical
relationships as appropriate constraints, based on a
comprehensive global liquefaction data set was estab-
lished.
A liquefaction data set covering more than 600

liquefaction sites from around the world, with 13 different
information entries was compiled. Liquefaction case

histories with critical depth less than 2 m or more than
15 m, fines contents over 35% and earthquake magnitude
over 7.8 were added compared to existing data sets
[24,41,42].
A design procedure of the C-BPNN model for

liquefaction assessment was developed with consideration
of constraints of gd, MSF, Kα, CN, and ΔðNlÞ60. A
combination of K-fold cross validation algorithm for
parameter selection and gradient descent method with self-
adaptive adjustment learning rate α and momentum factor
β were applied in model construction, effectively resolving
the problem of overfitting and local minimization.
Analysis demonstrated that existing knowledge on lique-
faction triggering can aid the performance of the neural
network model. Constraints CN and ΔðNlÞ60 can enhance
model performance, and are thus incorporated.
The effectiveness of the C-BPNN liquefaction assess-

ment model was validated based on the comprehensively
compiled data set, and is compared with several traditional
methods commonly used in engineering practice. The
C-BPNN method dramatically improved liquefaction
prediction performance on a global level, compared with
traditional methods which are significantly region biased
[25,26]. The prediction accuracy of the C-BPNN liquefac-
tion assessment model showed drastic improvements for
prediction in non-liquefaction sites. Comparisons with
typical borehole data further confirmed the effectiveness of
the method.
Influence factors of liquefaction triggering were ana-

lyzed through comparing the weights for each model input.
Liquefaction manifestation was shown to be most sensitive
to soil properties, compared with earthquake and site
conditions, similar to the conclusion drawn by Hu et al.
[77] based on a Bayesian network.
Data-driven liquefaction assessment models, such as the

one developed in this study, are inevitably based on
liquefaction case history data. Currently, the proposed
model is mainly restricted to clean sand and silty fine sand
(FC£ 50%) with critical depth no more than 23.5 m.
However, the advantage of such models is that when new

Fig. 10 Comparison of overall PSR of different liquefaction assessment methods.
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Fig. 11 Liquefaction assessment for two typical boreholes in the 1999 Chi-Chi earthquake using seven different methods (data derived
from Juang [43]). (a) Site 1: Boring log, SPT-N value, fines content, clay content, and prediction results at a site in Nantou (Hole No. NT-
BH-3) (Liq = Liquefaction); (b) Site 2: Boring log, SPT-N value, fines content, clay content, and prediction results at a site in Wufeng
(Hole No.WF-BH-8) (Non-liq = Non-liquefaction).
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data becomes available, its incorporation into the models is
straight forward.
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