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ABSTRACT Predicting the tunneling-induced maximum ground surface settlement is a complex problem since the
settlement depends on plenty of intrinsic and extrinsic factors. This study investigates the efficiency and feasibility of six
machine learning (ML) algorithms, namely, back-propagation neural network, wavelet neural network, general regression
neural network (GRNN), extreme learning machine, support vector machine and random forest (RF), to predict tunneling-
induced settlement. Field data sets including geological conditions, shield operational parameters, and tunnel geometry
collected from four sections of tunnel with a total of 3.93 km are used to build models. Three indicators, mean absolute
error, root mean absolute error, and coefficient of determination the (R2) are used to demonstrate the performance of each
computational model. The results indicated that ML algorithms have great potential to predict tunneling-induced
settlement, compared with the traditional multivariate linear regression method. GRNN and RF algorithms show the best
performance among six ML algorithms, which accurately recognize the evolution of tunneling-induced settlement. The
correlation between the input variables and settlement is also investigated by Pearson correlation coefficient.
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1 Introduction

The increasing traffic pressure in cities of China has led to
a large number of metros being built [1–5]. The metro
tunnels are generally constructed by shield method due to
its advantages of high speeds, minor disturbance to the
surface traffic, etc. [6,7]. During construction of the shield
tunnels, ground settlement will be inevitably caused due to
disturbance to the soil layers around tunnels and the
volume loss of the tail void, which may pose a risk to the
surrounding infrastructures [8–12]. To predict tunneling-
induced ground settlement, many endeavors have been
made, e.g., to propose empirical formulae [13–15],
analytical solutions [16,17], or to conduct elaborate
numerical simulations [18–20]. However, these methods
still have many limitations, e.g., inapplicable to complex
ground conditions and construction techniques [21],

difficult to identify the parameters of the sophisticated
soil constitutive models, hard to model the tunnel
construction process [22,23], etc. In the past few decades,
ML has become strong tool to solve nonlinear problems
with high dimension [24–26], since these algorithms can
effectively capture the nonlinear relationship among the
influential factors with less exertion. Some of these
algorithms are able to achieve the transformation of
parameters space, which prompts to find out the nature
of the problems [27,28].
ML algorithms adopted on predicting tunneling-induced

ground settlement in the previous literature can be
predominantly divided into the following two categories:
artificial neural network (ANN) and support vector
machine (SVM). Back-propagation neural network
(BPNN) is the first type of ANN used for predicting
settlement and its robustness is demonstrated to be
acceptable [29–32]. Wavelet neural network (WNN)
developed upon the integration between wavelet theoryArticle history: Received Aug 9, 2018; Accepted Nov 6, 2018
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and ANN, enhances the function approximation capability
[20]. Then more hybrid ANNs (e.g., particle swarm
optimization (PSO)-ANN, etc.) were employed to estimate
the tunneling-induced settlement [33,34]. The objective of
these hybrid algorithms is to determine the optimum
parameters used in ANNs, and then the global optimum
results can be gained. In recent years, SVM as a new
powerful ML algorithm for classification and regression,
has been extensively utilized in geotechnical areas [35–
38]. The main characteristic of SVM is that it is developed
upon the structural risk minimization (SRM), unlike the
empirical risk minimization (ERM) used in ANNs [39].
Accordingly, SVM possesses good estimation capabilities
in dealing with problems with a small sample size. Similar
to ANNs, the integration of SVM and other optimization
techniques can also improve the accuracy of models.
Zhang et al. [23] proposed a hybrid algorithm which
integrates the PSO and least-squares (LSSVM) to predict
tunneling-induced settlement. More recent work by
Kohestani et al. [40] introduced an ensemble learning
algorithm, known as random forest (RF), to predict the
tunneling-induced settlement since the RF algorithm
accommodates big data with a relatively short learning
time [41].
More ML algorithms such as radial basis function neural

network (RBF), general regression neural network
(GRNN), extreme learning machine (ELM), have success-
fully applied in other domain [42–44]. As an alternative
approach, data-driven models using different ML algo-
rithms are promising techniques for prediction and
classification. However, there are still several problems
need to be addressed: 1) There is no direction or analytical
solution for identifying which one is the most suitable
algorithm for a specific problem. In general, a methodol-
ogy is to compare the performance of different ML
algorithms in a given setting [45–47]. 2) A systematic,
quantitative comparison of the available ML algorithms
still lacks, although their performance in predicting
tunneling-induced settlement may be different dramati-
cally. Accordingly, it is urgent to conduct a benchmark
study in the application of ML algorithms in predicting
tunneling-induced settlement, which is of great signifi-
cance during tunnel construction.
To address above problem, the paper compares the

feasibility and applicability of six ML algorithms BPNN,
WNN, GRNN, ELM, SVM, RF in estimating tunneling-
induced settlements. In addition, multivariate linear
regression method is also used for predicting as a
comparison. Field data sets including geological, tunnel
geometric, shield operational parameters and maximum
ground surface settlement were collected from the project
of Changsha Metro Line 4, China. MATLAB software is
employed to run the ML algorithms in this paper.
The reminder of the paper is organized as follows:

Section 2 introduces the overview of the Changsha Metro
Line 4 project, tunnel construction method and data

sources. In Section 3, six ML algorithms have been
presented as well as the performance evaluation indicators.
The results of six ML algorithms including the determina-
tion of parameters and architectures of each ML algorithm
and corresponding predictions have been presented in
Section 4. The comparison of the performance of each ML
algorithm in predicting tunneling-induced settlement is
shown in Section 5.

2 Project background

2.1 Project description and ground condition

In this study, construction of four tunnel sections on Metro
Line 4 of Changsha, China, was investigated. The four
tunnel sections with the total length of 3.93 km are located
on the west bank of Xiangjiang River. The four sections
from north to south are as follows: 1) Liugoulong-
Wangyuehu (LW section); 2) Wangyuehu-Yingwanzhen
(WY section); 3) Yingwanzhen-Hunan Normal University
(YH section); 4) Hunan Normal University-Hunan
University (HH section).
The geological profile along the tunnel axis is shown in

Fig. 1. The cover depth of tunnel varies from 10 to 28 m.
The water table is approximately 5 m below the ground
surface. The ground encountered by the shield tunnel can
be divided into two sections: rock zones and soil zones.
Rock zones is underlain by rocks with different weathering
grades. The rocks in the LW section are the slightly
weathered slate and moderately weathered slate. The
weathered limestone and slate spread in the WY section.
YH and HH sections mainly consist of weathered
sandstone and mudstone. Soil zones means that the soil
around the tunnel consists of clay and gravel. The top layer
is backfills, which consists of clay, sand, and discarded
concrete blocks. Underlying the backfill layer is clay with
an average 3 m thick. The gravel layer scatters in the WY
section.

2.2 Construction method

The metro tunnel was constructed by earth pressure
balanced (EPB) shield-driven method. The cutterhead
diameter and length of EPB shields used in this project are
6.28 and 8.735 m, respectively. The open ratio of
cutterhead is 35%. The tunnel lining is composed of six
precast concrete segments, which form rings. The outer
and inner diameter of the segmental lining are 6 and 5.4 m,
respectively. The ring width is 1.5 m.
The advancement of the EPB shield inevitably leads to

soil disturbance. Figure 2 schematically illustrates the
shield tunneling process and the key operational para-
meters. Face pressure that sustains the face stability is
supplied by the cutterhead and the soil in the chamber. The
volume of excavated soils is control by the trade-off
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between the rate of extraction of spoil through the screw
and the shield penetration rate. If the penetration rate is
higher than the extraction rate, that is, the volume of
extraction is less than the volume replaced by the shield
body, the shield may generate a much higher face pressure
and the ground surface heave will occur. Otherwise, if the
penetration rate is less than the extraction rate, a surface
settlement will occur, which may even cause tunnel face
instability. Moreover, the thrust device of a EPB shield
consists of several parallel-arranged hydro-cylinders,
which are jointed to the cutterhead and the segments
with spherical hinges [48]. The thrust is mainly used to
overcome the friction force between the shield body and
the surrounding soil layers as well as the force at the tunnel
face. The torque acting on the cutter head is produced
during the process of cutting soils. It always changes with

the variation of face pressure and thrust. Grouting filling is
an important factor in contributing to the surface settle-
ment. As the shield is jacked forward, a tail void around the
outside of lining is created as shown in Fig. 2. Tail void
grouting is necessary in order to prevent the soil around
tunnel moving toward the void. The five operational
parameters presented above thrust (Th), torque (To), face
pressure (Fp), penetration rate (Pr), grout filling (Gf ) are
the key factors affecting tunneling-induced settlement, and
these parameters will be considered as input variables in
the computational models.

2.3 Data sources

The factors relevant to tunneling-induced settlement can be
classified into three categories [32]: tunnel geometry,

Fig. 1 Geological profile at the Changsha Metro Line 4 construction site.

Fig. 2 Factors of tunneling-induced surface settlement.
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geological condition, and shield operational parameters. In
this paper, ten input variables are considered including five
shield operational parameters discussed in Section 2.2,
four geological parameters blow counts of standard
penetration test (MSPT) and dynamic penetration test
(MDPT) of soil layers, uniaxial compressive strength of
weathered rocks (MUCS) and groundwater table (W). One
geometry parameter is the cover depth of tunnels (C). Due
to the consistent tunnel specification in this project, the
overburden of the tunnel is the unique geometry factor.
Herein, geological parameters were obtained from the
geological investigated reports and operational parameters
were collected per minute from the automatic collecting
equipment embedded in the EPB shield system. Settlement
monitoring points were installed at about 7.5 m intervals
along the tunnel alignment and the ground settlement were
obtained from manual records. Finally, a database includ-
ing 200 monitoring points installed along the tunnel

centerline is established. Tables 1 and 2 show the range of
input and output variables for training and test sets,
respectively. In this research, 80% of data sets arbitrarily
sampled out of database are considered for the training set,
and the remaining 20% are used to test model.
The database applied to the training model is mapped to

the interval (-1, 1) using a data normalization algorithm
since it can reduce the computational cost in this way. For a
parameter x, the normalized value x is obtained from

xnorm ¼ x – xmin

xmax – xmin
xmax – xminð Þ þ xmin, (1)

where xmax and xmin = the maximum and minimum value
of the variable x, xmax and xmin = the maximum and
minimum values of the variable x after normalization. The
final outputs need to be transformed into the original vector
space.

Table 1 Ranges of all variables for training set

type variable (unit) data (200) unit

Min. Max. Ave.

geometry cover depth (C) 13.40 31.70 19.14 m

operation torque (To) 0.74 3.95 2.22 MN$m

penetration rate (Pr) 3.46 51.00 23.91 mm/rev

thrust (Tr) 3.80 24.20 13.04 MN

face pressure (Fp) 0.00 2.10 1.16 bar

grout filling (Gf) 4.00 11.00 5.63 m3

geology tunnel depth below the water table (W) 4.05 25.38 11.99 m

modified standard penetration test (MSPT) 0.00 38.72 7.78 –

modified dynamic penetration test (MDPT) 0.00 12.44 0.55 –

modified uniaxial compressive strength (MUCS) 0.00 36.30 8.28 MPa

output maximum settlement (S) -19.13 3.05 -2.50 mm

Table 2 Ranges of all variables for test set

type variable (unit) data (200) unit

Min. Max. Ave.

geometry cover depth (C) 14.10 29.70 19.39 m

operation torque (To) 1.11 3.20 2.29 MN$m

penetration rate (Pr) 5.33 54.60 26.54 mm/rev

thrust (Tr) 4.38 20.70 12.43 MN

face pressure (Fp) 0.00 2.20 1.18 bar

grout filling (Gf) 4.00 6.90 5.54 m3

geology tunnel depth below the water table (W) 5.05 23.48 12.22 m

modified standard penetration test (MSPT) 0.01 32.29 6.51 –

modified dynamic penetration test (MDPT) 0.00 5.66 0.29 –

modified uniaxial compressive strength (MUCS) 0.00 31.62 8.99 MPa

output maximum settlement (S) -12.13 2.52 -1.90 mm
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3 Machine learning methodology

3.1 Description of the algorithms

3.1.1 Multivariate linear regression

The multivariate linear regression (MLR) is the simplest
regression method. For a given input vector X = (x1,x2,
x3,...,xn) and an output y, the linear regression can be
obtained based on the following equation:

y ¼ bþ
Xn
i¼1

aixi, (2)

where ai, b = fitting parameters of the model; n = number
of features.

3.1.2 BPNN

The BPNN is one of the most popular feedforward neural
networks. BPNN algorithm develops on the basis of the
architecture of the multilayer perceptron neural network
which consists of an input layer, one or multiple hidden
layers and an output layer. By adjusting the number of
hidden layers and neurons, an optimal BPNN can be
obtained. Each neuron in the hidden layer is associated
with a given weight and bias term to transmit inputs from
input layer to outputs. The output of the hidden layer in
BPNN is expressed as:

yj ¼ f
Xm
i¼1

ωjixi þ �j

 !
, (3)

where xi = input value, yj = result from hidden neuron j, ωji

= weights on the connection between the input and the
hidden neuron j, qj = bias term, f = activation function, m =
the number of neurons in the input layer. The ωj,i and qj
values are determined randomly for the initialization in
computer software Matlab. To account for the nonlinearity
in this problem, the activation function used herein is a
tansig function defined as:

f ðIÞ ¼ – 2

1þ expð – 2IÞ – 1, (4)

where I ¼
Xm
i¼1

ωjixi þ �j. Similar to the process in hidden

layer, the results of hidden layer are finally mapped into
output layer by a linear or nonlinear function.

3.1.3 WNN

The WNN is an algorithm developed on the basis of the
topology of neural network. This algorithm combines the
theory of wavelet transform and neural network. WNN

model generally has a feedforward structure with a fixed
hidden layer. The activation functions employed in the
hidden layer are drawn from an orthonormal wavelet
family. The theoretical features of wavelet transform helps
determine the neural network parameters during the
training process [22]. It has been proved that WNNmodels
provide an approach to avoid local minima, accelerate
convergence and identify optimum network structures
more efficiently. In this paper, the performance of WNN
models are dependent on wavelet functions. Pourtaghi and
Lotfollahi-Yaghin [22] proposed that the network with
Morlet wavelet show the best performance in predicting
tunneling-induced settlement by comparing the perfor-
mance of different wavelet functions. So Morlet mother
wavelet function is also chosen as the activation function
of hidden layer in this study, which is expressed as:

φðtÞ ¼ cosð1:75tÞe – t2=2, (5)

where φ = Morlet mother wavelet function, t = input
variable.
Assuming that the number of neurons in input layer,

hidden layer and output layer are m, n, and N, respectively.
The output of jth neuron in hidden layer is:

zj ¼ φ

Xm
i¼1

ωijxi – bj

aj

0
BBB@

1
CCCA, (6)

where bj = shift factor of φ, aj = the retractable factor of φ,
ωij = weights on the connection between the input and the
hidden neuron j. The final output of WNN is as follows:

yk ¼
Xn
j¼1

ωjkzj, (7)

where ωjk = weights on the connection between the hidden
neurons the output neuron.

3.1.4 GRNN

GRNN is a variation of RBF neural network which is
designed for function approximation. A GRNN consists of
four layers: input layer, hidden layer, summation layer and
output layer. The summation layer includes only two
neurons. The first neuron of summation layer sums all
outputs of hidden layer that is the numerator of equation.
The second neuron is equal to unity.
The GRNN does not need to repeat the iterative training

process and initialize the network connection weights, the
main objective of learning is to find out the best smoothing
parameter (σ). Provided that f(x, y) stands for the joint
probability density function of random variables x and y,
then the observe value of x is x0, the regression of y on x is
given by:

Renpeng CHEN et al. Shield tunneling-induced ground settlement using machine learning techniques 1367



E½yjx0� ¼ yðx0Þ ¼
!

1

–1yf ðx0,yÞdy

!
1

–1f ðx,yÞdy
, (8)

where y (x0) = predictive output of y with respect to x0, n =
the number of sample of observations. The density
function f (x0, y) can be calculated according to the
following formulae:

f ðx0,yÞ ¼
1

nð2πÞðpþ1Þ=2�pþ1

Xn
i¼1

e – dðx0,xiÞe – dðy,yiÞ, (9)

dðx0,xiÞ ¼
Xp
j¼1

½ðx0j – xijÞ=��2, (10)

dðy,yiÞ ¼ ðy – yiÞ2, (11)

where p = dimension of vector variable x, σ = smoothing
parameter. Considering with the above formulae, the y (x0)
can be defined as:

yðx0Þ ¼

Xn
i¼1

ye – dðy,y0Þ

Xn
i¼1

e – dðx0,xiÞ
: (12)

Noting that numerator of Eq. (12) is the value of first
neuron in summation layer and denominator is equal to the
value of second neuron.

3.1.5 ELM

ELM is a modification of the single-hidden layer
feedforward neural network, which can be obtained by
removing back-propagation from a multilayer perceptron.
In contrast to other ML algorithm like back-propagation
and SVM, ELM provides a nonlinear model at the speed of
a linear model. It randomly chooses hidden nodes and
analytically determines the output weights of SLFNs
algorithms. In addition, all the hidden layers in hierarchical
ELM as a whole are not required to be iteratively tuned and
it only needs to compute output weights. In general, ELM
can be represented as:

y ¼ Hβ, (13)

Minimize : kHβ – yk, (14)

where H = the hidden layer output matrix of the neural
network, β = weight vector connecting the hidden nodes
and the output nodes, y = the observations of outputs. The
optimum ELM model can be achieved by minimizing the
value of kHβ – yk. Detailed description of the ELM
algorithm can be referred to Huang et al. [49].

3.1.6 SVM

SVM is a ML tool that uses statistical learning theory to
solve multiple-dimensional functions. The SVM regres-
sion reduces the error bound rather than the residual error
on the training data set [39]. Hence, SVM aims to find a
function fsv(x) that has at most a deviation ε from each of
the targets in the training set [43]. For linear function, fsv(x)
can be written as:

fsvðxÞ ¼
Xn
i¼1

ωiφiðxÞ þ b, (15)

where φ = mapping function from original data to a high-
dimension feature space, ωi = weight vector, b = threshold
of SVM. The SVM formulates the regression as an
optimization problem in the primal weight space. As given
by:

minimize :
1

2
jωj2,

subject to :  �����XM
i¼1

ωifiðxÞ þ b – yi  �����£ε: (16)

In addition, the kernel function as an mapping function
can handle nonlinear cases [43]. The Gaussian kernel
function as follow is used in this paper.

fðxi,xÞ ¼ exp
– kx – xik
2�2

� �
, (17)

where σ = the width of the Gaussian kernel function, also
known as smoothing parameter.

3.1.7 RF

RF is an ensemble learning algorithm for classification and
regression tasks. Two powerful ML techniques, bootstrap
aggregating [50] and random subspace [51] are integrated
into the RF algorithm. In bagging, n bootstrap sets are
made by sampling with replacement N training examples
from the training set. The number of samples and features
in bootstrap is arbitrary, less than the original training set.
Then a decision tree is built using a bootstrap sample. A
decision tree classifies a bootstrap sample by testing
attributes of this bootstrap sample at each node. Each node
tests a particular attribute, with the leaves of the tree
representing the output labels. Moving down a particular
branch of a tree tests particular attributes at each node in
order to arrive to an output label. The final result aggregate
the outputs from all leaves [52].
The output of the RF prediction can be expressed as:

y ¼ 1

ntree

Xntree
i¼1

yiðxÞ, (18)
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where y = average output of RF prediction from a total
amount of ntree, yi(x) = individual prediction of a tree for an
input vector x.

3.2 Performance evaluation method

Performance evaluation is generally conducted to assess
the accuracy of model. An important contribution of
Tseranidis et al. [53] is a list of eight measures of error to
assess model performance. Three performance indicators:
mean absolute error (MAE), root mean square error
(RMSE), and coefficient of determination (R2) are selected
to demonstrate the correspondence between predictions
and measurements in this research. The definition ofMAE,
RMSE, and R2 are as follows:

MAE ¼ 1

n

Xn
1

jri – pij, (19)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
1

ðri – piÞ2
s

, (20)

R2 ¼ 1 –

Xn
i¼1

ðri – piÞ2

Xn
i¼1

ri – rið Þ
, (21)

where r = actual settlement, p = the predicted settlement, n
= total number of events considered, r = average value of
measured settlements.MAE reflects the average magnitude
of error between predicted and measured value, while
RMSE describes the standard deviation of differences
between them. R2 provides a measure of how well
observed outcomes are replicated by the model.

4 Results

4.1 Parameters analysis

To provide a descriptive overview of the data distribution,
the correlation matrix between ten input variables and one
output variable is presented in Fig. 3. The scatter plot
matrix in the upper panel illustrates the relationship
between pairwise parameters. Each Pearson correlation
coefficient R filled in the low panel means the correlation
between the variables in the column and corresponding
row. The expression of Pearson correlation coefficient is
shown in Eq. (22). It can be observed that all parameters
have a relatively poor correlation (R< 0.5) with one
another, and the data set is quiet widely distributed. Hence,
scaling all input variables into [–1, 1] range based on their
minimum and maximum values will greatly save computa-
tional cost [37]. The results also indicate that the ground

Fig. 3 Correlation matrix and scatter plot of all variables.
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settlement shows positive correlation with torque, thrust,
tunnel depth, water table and the strength of gravel and
rock, which is consistency with common recognition.
However, some results violate the practical knowledge,
like R = –0.06 and –0.15 for face pressure and grout filling
with respect to settlement, respectively, which means that
the increase in grout filling and face pressure leads to an
decrease of the magnitude of ground settlement but the
ground settlement increases actually. Overall, the ground
settlement weakly correlates to the ten input variables, and
a simple linear relationship between variables does not
exist.

R ¼
n
Xn
i¼1

xiyi –
Xn
i¼1

xi
Xn
i¼1

yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn
i¼1

x2i –
Xn
i¼1

xi

 !2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn
i¼1

y2i –
Xn
i¼1

yi

 !2
vuut

, (22)

where xi = the value of input variable, yi = the value of
output variable, n = total number of events considered.

4.2 Multivariate linear regression

Figure 4 shows the relationship between the predicted
settlement obtained from the multivariate linear regression
(MLR) and the measure one. The maximum settlement is
obtained by the following equation.

S ¼ 1:065x1 þ 0:106x2 þ 0:399x3 – 0:427x4 – 0:530x5

þ0:137x6 – 0:133x7 – 0:008x8 þ 0:07x9

þ0:174x10 – 11:108, (23)

where [x1, x2,..., xn] are the ten input parameters, as shown
in Table 1. The values ofMAE, RMSE (calculated based on
both training and test set) and the coefficient of
determination of R2 (calculated based on test set) are
presented in the figure. The marginal histogram shows that
the predicted value ranges from -5.625 to -0.125 mm, but
the measured settlement ranges from -12.5 to 0.125 mm.
Further, the coefficient of determination R2 is significantly
low (0.09), and the absence of agreement between the
measured and predicted values is consistently observed. It
suggests linear model is not able to properly predict the
tunneling-induced ground settlement. The settlement
exhibits a nonlinear variation with respect to the shield
operation factors, geological conditions and tunnel char-
acteristics.

4.3 Model development and parameter optimization

A framework is developed in MATLAB to train all six
different types of models examined in this paper, as shown
in Fig. 5. In general, the completed process of establishing
a ML model involves three phases: training, validation,
and test. Several validation methods has been conducted
including bootstrap, substitution method, and holdout
method, etc. [54,55]. The most popular one is probably
k-fold cross-validation (CV) method [56]. Based on this,
K-CV method is used as validation method in this paper.
K-CV is a technology of dividing the original data set
randomly into K sub-data sets. K-1 sub-data sets are used
as training set and a remaining data set is the test set. That
is, each sample has opportunity to become the test set. The
process repeats K times, and the ultimate result is
originated from the averaged value. The training set is
divided into four subsets in this research. Herein, each ML

Fig. 4 Marginal histogram of settlements predicted by multivariate regression method, compared to measured values.
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algorithm with 100 sets of parameters or architectures are
calculated in parallel. Three subsets are used to train model
while the remaining subset is used to test model. After
computing 100 times, four sets of MAE and RMSE values
are obtained. The optimum parameters or architectures of
ML algorithms are determined by the average MAE and
RMSE values of four validation sets. The parameters or
architecture with the lowest error are defined as the
optimum model. Then the test set is used to test each
model, thereby the most appropriate algorithm for this
project can be determined by comparing the MAE and
RMSE values of six algorithms.
To optimize the network, the number of neurons in

hidden layer is tuned. The result presents the BPNN cannot
be converged if the number of neurons in the hidden layer
is less than 10 in this case. As shown in Fig. 6(a), the
average MAE and RMSE values of 4-folds CV sets vary
dramatically with the increase in the hidden neurons. The
number of neurons of 53 yields the lowestMAE and RMSE
values.
The variation of MAE with the increasing neurons in

WNN is presented in Fig. 6(b). TheMAE and RMSE values
increase monotonically with the increase in the number of
neurons. The magnitude ofMAE and RMSE values is large,
similar to the BPNN algorithm. The optimum number of
neurons is here identified to 10.
Figure 6(c) illustrates the variation of MAE and RMSE

values of GRNN models with different smoothing
parameter σ. It can be observed that MAE and RMSE
values hold steady when the σ value is larger than 4. If σ
sets large, the generalization ability of network will
increase and also degrade the error of prediction. However,

excessively high σ can result in overfitting. Low smooth
factor can reduce the network’s generalization ability and
may even prevent it from doing any prediction at all [57].
Therefore, the model with σ = 2 is regarded as the best
option based on the trade-off between MAE and RMSE.
Figure 6(d) shows the variation of MAE and RMSE

values in the ELM models. Similar to WNN algorithm,
The MAE and RMSE value increases monotonically with
an increase in neurons of hidden layer and the prediction
error is large when the number of neurons exceeds 20. The
optimum number of neurons of the hidden layer is equal
to 3.
The main objective of K-CV method is to identify the

optimum penalty parameter c and kernel parameter g in the
SVM. Figure 6(e) shows the contour map of RMSE value
with the variation of c and g values. It indicates the least
value of RMSE is equal to 0.02 when the c and g values are
equal to 5.6569 and 0.0625, respectively.
As shown in Fig. 6(f), for lower number of trees in RF

algorithm, theMAE value decreases with an increase in the
number of trees. However, the accuracy declines steadily
as the number of trees exceeds 13 trees, which means that
any further increase in the number of trees will result in
overfitting. Then beyond 40 trees, the MAE and RMSE
values saturate. Herein, the optimum number of trees is
identified to be 13.
Table 3 presents the optimum average MAE value of six

machine learning algorithms and the corresponding
optimum parameters or architectures. The table also
presents the computational cost of each method after
complete 100 times. It can be seen the calculation speed of
ELM and SVM methods is the fastest. Three ML
algorithms WNN, GRNN, and RF have the same
magnitude of calculation time. Undoubtedly, the computa-
tional costs of BP is highest with 165 s. The result is
consistent with the descriptions of six ML methods in the
Section 3.1. The six ML methods with these optimum
parameters or architectures will be used to establish the
final models and their performance will be evaluated by the
test set.

4.4 Performance analysis

The predicted results based on six best models obtained
from the Section 4.3 are plotted together, compared with
measured settlement, as shown in Fig. 7. The RMSE and
MAE values of training and test set are also calculated and
the predictions of test set are fitted using linear regression.
Three indicators can be employed to analyze the
performance of each model.
The settlements predicted using the BPNN are plotted in

Fig. 7(a) compared to the measured values. The MAE and
RMSE values of the training set are relatively low, 0.21 and
0.33, respectively. However, the RMSE andMAE values of
test set increase to 3.35 and 4.28, respectively, compared
with the MLRmethod. The value of R2 increases slightly to

Fig. 5 Workflow of determining optimum ML algorithm.
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0.12 but it is still as low as the case of MLR method.
The predicted results of training and test set using the

WNN are plotted in Fig. 7(b). The WNN shows better
performance than the BPNN with MAE and RMSE values
of test set decreasing to 2.18 and 3.53, respectively. The
ranges of predicted settlement are nearly equal to measured
settlements, but the R2 is still relatively low, similar to that

of the BPNN.
Figure 7(c) illustrates the settlements predicted using the

GRNN. The predicted settlements show an excellent match
with settlements over a wide range of measured values.
Results of training set fit the data perfectly and yield low
error (MAE = 0.34, RMSE = 0.75). Moreover, the
predictions of test set also yield relatively low error and

Fig. 6 Relation between the model performance and the parameter of test set. (a) BPNN; (b) WNN; (c) GRNN; (d) ELM; (e) SVM; (f) RF.
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the majority of points closely lie in a straight line with
slope of 1 (P = M line). It is worth noting that the predicted
settlement of test set deviates from the measured settlement
at the maximum settlement point, which is attributed to a
lack of training data in that range. Overall, the GRNN has
better generalization ability, which makes it possible for
the GRNN to capture the complicated nonlinear relation-
ships between input and output variables.
The measured settlements and predictions using the

ELM are plotted in Fig. 7(d). The main feature of the ELM
is computational efficiency. Interestingly, the ELM yields a
poor performance, similar to the case of the MLR method.
Although the values ofMAE and RMSE are acceptable, but
the R2 value is significantly small. The predicted settlement
values only range from –6 to –4 mm in contrast to –12.5 to
0.125 mm in the practical project. So the predicted
settlements using this ELM are discredited.
Settlements predicted using the SVM are plotted in

Fig. 7(e), compared with measured settlements. The SVM
gives a reasonably good prediction of the settlement over a
wide range of measured values. The higher value of R2

demonstrates that the predictions exhibit a linear correla-
tion with respect to measured settlements. The predictions
of SVM can be mapped to another space using this fitted
linear regression function, which further improves the
accuracy of the SVM model. However, the range of
predicted values (-5.5 to 0 mm) deviates from the
measured settlement values. The discrepancy is notably
high for large settlement data under -4 mm.
The settlements predicted using RF are plotted in

Fig. 7(f). Similar to the GRNN, the results of training set
fit the data perfectly and yield low error with MAE = 0.05,
RMSE = 0.59. The fitted line of the test set is also close to
the P = M line and the MAE and RMSE values of RF are
1.85 and 2.66, respectively.
The statistics performance of predicted results of all

models is presented in Fig. 8, compared with measured
settlements. Figure 8(a) shows the distribution of predicted
settlements based on training set. It can be seen that the
mean predicted settlement is roughly identical in different
models. As for the distribution of predicted settlements, the

results of BPNN, GRNN, and RF models show great
agreement with distribution of actual settlements. How-
ever, the other three models cannot accurately recognize
the settlement distribution characteristics. The predicted
results of MLR, ELM, and SVM only range from – 6 to
0 mm while the measured settlements of training set fall
into the range of – 19 to 6 mm. Meanwhile the WNN fails
to predict the range of 1th and 99th percentiles as well as
the outliers.
Figure 8(b) shows the distribution of predicted settle-

ments based on the test set. In general, these models with
great performance on the training set also present great
performance on test set. It can be observed that GRNN and
RF models still achieve the best performance among these
algorithms. Note that the range of predicted results of test
set using BPNN remarkably exceed the actual range. The
BPNN suffers from poor generalization performance
owing to the failure of finding global minimum of error
function as mentioned in Section 3.1.2. Although the
predicted results of training set show great performance,
the reliability of the trained model cannot be guaranteed.
The predicted settlements using the other three algorithms
have the same deficiencies as the training set. Poor
generalization ability of these models leads to the narrow
range of predicted settlements.

5 Discussion

A comprehensive comparison of results of the different
ML algorithms demonstrates that the capability of a given
model to predict the tunneling-induced settlements
depends on the relationship between input and output
variables. Linear regression method has been regard as an
effective and time-saving way to capture the input-output
relationship. In this study, the failure of multivariate linear
regression approach to predict the settlements, high values
of MAE and RMSE and low value of R2, suggests that this
is a highly nonlinear problem. To identify the response
mechanism, ML algorithms are employed to address this
nonlinear and multivariable problem. Table 4 compares the
predicted results using MLR, BPNN,WNN, GRNN, ELM,
SVM, and RF algorithms.
The evolution of predicted ground settlements using

different ML algorithms is shown in Fig. 9, compared with
measured settlements. RF and GRNN algorithms accu-
rately capture the evolution of actual observations. The
predicted value using the BPNN algorithms vary remark-
ably, resulting in losing fidelity at some points. While the
results of WNN, SVM, and ELM are prone to identical,
and the difference between the maximum and minimum
predictions is relatively small. Figure 10 presents the
corresponding prediction errors of six machine learning
algorithms. The prediction errors are defined as:

e ¼ Sp – Sm, (24)

Table 3 Values of optimum architectures or parameters in six ML

algorithms

algorithm optimum parameters MAE (mm) time (s)

BPNN hidden_layer_number = 1
hidden_layer_neuron_num = 53

6.33 165

WNN hidden_layer_neuron_num = 10 5.90 32

GRNN s_width index = 2 2.35 41

ELM hidden_layer_neuron_num = 3 2.33 5

SVM c_penalty = 5.6569
g_width index = 0.0625

1.49 9

RF ntree = 13 2.67 28
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where Sp = the predicted settlement; Sm = the measured
settlement. The negative value means that the predicted
settlement is larger than the measured settlement while the
positive settlement means that the predicted settlement is
lower than the measured settlement. It can be observed that

the predicted settlement is larger than measured settlement
at most points, which indicates that the predicting
tunneling-induced settlement using ML algorithms are
safe. The prediction errors of BP, WNN, and ELM are
much larger than the remaining three algorithms. The

Fig. 7 Predicted settlements using (a) BPNN, (b) WNN, (c) GRNN, (d) ELM, (e) SVM, (f) RF.
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maximum prediction error of ELM even reaches to about
15 mm while the maximum prediction errors of BP and
WNN algorithms reaches to about 10 mm. By contrast, the

Fig. 8 Box plot of the settlements predicted by ML methods, compare to measured settlements (a) training set and (b) test set.

Table 4 Comparison of seven models for predicting settlements

methods training set test set R2

MAE RMSE MAE RMSE

MLR 2.15 3.02 2.31 2.71 0.09

BPNN 0.21 0.33 3.35 4.28 0.12

WNN 1.80 3.66 2.18 3.53 0.13

GRNN 0.34 0.75 1.60 2.23 0.55

ELM 2.22 3.20 2.22 2.86 0.02

SVM 1.40 2.63 1.70 2.28 0.44

RF 0.05 0.53 1.85 2.66 0.42

Fig. 9 Results of test set of different ML methods in predicting
settlements.
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maximum prediction errors of GRNN, SVM, and RF
algorithms are about 7.5 mm. Note worth that six ML
algorithm are prone to yield large or small prediction errors
at same monitoring points. However, the magnitude of
prediction errors is different. It indicates the mechanism of
six machine learning algorithms may be identical in
predicting tunneling-induced settlement, but they show
different performance. Overall, ML algorithms provide an
efficient route toward the prediction of settlements caused
by tunneling. GRNN and RF algorithms show the best
performance, so these two algorithms are recommended to
predict tunneling-induced settlement. The settlement
prediction is a problem with complicated mechanism and
multiple influencing factors, data-driven models built by
ML algorithms offer a pragmatic and reliable option while
waiting for the development of mechanism-based models.

6 Conclusions

Inspired by the significant development of ML algorithms,
ANN, SVM, and RF algorithms has been used in
predicting tunneling-induced ground settlement. However,
a lack of a full-scale comparative studies impedes the use
and popularity of these data-driven models. This paper
investigated the performance of six ML algorithms in
predicting the ground settlement, and the following
conclusions can be drawn.
Pearson correlation coefficient is applied to investigate

the correlation between the input and output variables. The
ground settlement weakly correlates to the ten input
variables and a simple linear relationship between

variables does not exist. Meanwhile the failure to
predicting ground settlements using the multivariate linear
regression also demonstrates that tunneling-induced set-
tlement exhibits a nonlinear variation with respect to
influential factors.
4-folds cross-validation method as the validation

method is used to determine the optimum architecture or
parameter of six machine learning algorithm. Each
machine learning algorithm with 100 sets of parameters
or architectures is computed. Through the analysis of the
outcomes of different ML algorithms, it indicates that the
variance of predicted results based on the test set using the
BPNN is dramatic, losing fidelity at some monitoring
points. Other three ML algorithms, WNN, ELM, and SVM
fail to accurately predict the evolution of tunneling-
induced settlement since the predicted settlement value is
virtually identical. The predicted settlement using GRNN
and RF algorithms shows great agreement with the
measured settlement. Meanwhile the prediction error of
BP, WNN, and ELM reaches to 15 mm while the
maximum prediction errors of GRNN, SVM, and RF are
7.5 mm. Accordingly, two algorithms GRNN and RF are
recommended as a useful solution for predicting tunneling-
induced settlements, and the results can be as a reminder
for field engineers.
It is worthy noted that different input variable will affect

the results. This paper placed emphasis on the performance
of six machine learning algorithms in predicting tunneling-
induced settlement using ten fixed input variables. The
influence of combination of different input variables on the
performance of predicting settlement should be investi-
gated in the further study.

Fig. 10 Prediction errors of test set of different ML methods in predicting settlements.
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