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ABSTRACT The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree
techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed
with innovative types of smoothing domains. These models are found having a number of important and theoretically
profound properties. This article first provides a concise and easy-to-follow presentation of key formulations used in the
S-FEM. A number of important properties and unique features of S-FEM models are discussed in detail, including 1)
theoretically proven softening effects; 2) upper-bound solutions; 3) accurate solutions and higher convergence rates; 4)
insensitivity to mesh distortion; 5) Jacobian-free; 6) volumetric-locking-free; and most importantly 7) working well with
triangular and tetrahedral meshes that can be automatically generated. The S-FEM is thus ideal for automation in
computations and adaptive analyses, and hence has profound impact on AI-assisted modeling and simulation. Most
importantly, one can now purposely design an S-FEM model to obtain solutions with special properties as wish, meaning
that S-FEM offers a framework for design numerical models with desired properties. This novel concept of numerical
model on-demand may drastically change the landscape of modeling and simulation. Future directions of research are also
provided.

KEYWORDS computational method, finite element method, smoothed finite element method, strain smoothing technique,
smoothing domain, weakened weak form, solid mechanics, softening effect, upper bound solution

1 Introduction

1.1 Brief history on the finite element method (FEM)

As one of the most successful numerical methods, the FEM
[1–4] has been well developed and now widely applied to
solve mechanics problems in sciences and engineering,
including structural analysis and design, material design
and evaluation, fluid flows, thermodynamics, soil
mechanics, biomechanics, electromagnetism, just to
name a few. The key ideas and techniques of the FEM
were mainly established, fine-tuned and perfected over
1950s–1980s. The democratization and popularization of
FEM are largely supported by three important factors: solid
mathematic theory, fast development of computer hard-

ware, and development of user-friendly commercial soft-
ware packages. Despite the huge success, the standard
FEM, however, has also some limitations, including
Refs. [5,6]:
1) Poor accuracy in stresses when a linear triangular

(2D) or tetrahedral (3D) mesh, or T-mesh, is used. This is
due to the overly-stiff behavior rooted at the fully-
compatible element-confined Galerkin weak formulation
using assumed displacement field. The T-mesh is, how-
ever, the simplest and the only mesh type that can be
generated automatically for complicated geometries of
solids and structures. Hence, it is indispensable mesh to
use in practice. Efforts to make T-mesh usable effectively
are thus extremely important, and much of the efforts on
meshfree methods are with this goal [7,202–204].
2) The standard FEM demands for high quality mesh,

when quadrilateral (Q4) and hexahedral (H8) elements areArticle history: Received Oct 15, 2018; Accepted Nov 23, 2018
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used. This often leads to time-consuming and costly
manual operations by the analysts. In addition, sophisti-
cated software packages are needed in the creation and
checking the quality of the meshes.
3) Mapping is a must in the FEM to ensure the

compatibility on the interfaces of Q4 and H8 elements.
This not only leads to higher computational costs for the
evaluations of the Jacobin matrix, but also poor solutions
and even breakdown during computation when an element
is heavily distorted. This is because the Jacobin matrix can
become badly conditioned. For this reason, the analysts
need to be properly trained in using a sophisticated pre-
processor for creating FEM models.
4) The fully compatible FEM solution is always a lower

bound (for force-driving problems, in strain energy
measure). Lacking of upper bound leads to difficulty to
quantify the solution errors, and to determine the necessary
mesh density. Trial-and-error is often required.
5) Volumetric locking phenomenon: The solution error

increases significantly for incompressible solids whose
Poisson’s ratio closes to 0.5, at which the bulk modulus
approaches to infinite and thus dominates the strain energy
of the entire system, leading to erroneous solution that is
“locked” in volumetric behavior.
Alternative theory and techniques are needed to address

the above-mentioned problems, a reliable numerical
method that works effectively with the most simplicial T-
mesh can be critically valuable.

1.2 Brief history on the smoothed finite element method
(S-FEM)

The S-FEM [8–36] was originated by G R Liu and
coworkers based on finite element mesh by applying the
strain smoothing techniques [37] that was used to stabilize
the nodal integrated Galerkin meshfree methods, and the
concept of point interpolation method (PIM) used to
construct meshfree shape functions [5]. The first paper of
S-FEM was published in 2005 [9] using smoothing cells
created based on nodes, but it was termed as LC-PIM as a
part of efforts on meshfree method development using
PIM. When linear PIM is used, the LC-PIM is actually the
NS-FEM using linear 3-noded triangular (Tr3) elements. In
2008, the 3D version of NS-FEM (was still termed as LC-
PIM) using 4-noded tetrahedral (Te4) elements was
developed [10]. In 2008, the important upper-bound-
solution and volumetric-lock-free properties of NS-FEM
was discovered and examined in detail [11]. Since then a
family of models have been established through a number
of innovative constructions of smoothing domains (SDs).
The S-FEM becomes a valuable combination of the
standard FEM [4] with the strain smoothing operation
[37] using innovative types of SDs [8] and PIM used in the
meshfree techniques [5]. This novel combination effec-
tively addresses almost all the limitations in the FEM.
Typical S-FEM models developed so far are:

1) Cell-based S-FEM (CS-FEM) for both 2D and 3D
problems [12,15,46,165,169,171,174,177,182,193]. The
first CS-FEM paper was published in 2007 [12];
2) Node-based S-FEM (NS-FEM) for both 2D and 3D

problems [20,41,99,166,176,194]. The first paper on NS-
FEM was published in 2005 [9];
3) Edge-based S-FEM (ES-FEM) for 2D and 3D [21–

24,33,47,61,62,72,75,77,82,88,110,129,141,172,192,197,
210]. The first paper on ES-FEM was published in 2009
[21];
4) Face-based S-FEM (FS-FEM) for 3D [27–29,

94,164,195]. The first paper on FS-FEM was published
in 2009 [27];
5) Hybrid types of smoothing domains was also

designed, in constitutive-matrix based selective manner
[16,29,32–35,48–56,74,76,157,187], and in domain-based
manner: S-FEM/FM-BEM [188], sub-domain S-FEM
[189], ES-XFEM [85,89], αFEM [18,25,26,48,49,
168,178], bFEM [36,198], etc..
Studies have found that each S-FEM model can have

different properties or unique features, depending on the
types of smoothing domains used [8]. These S-FEM
models have already been applied to a wide class of
mechanics problems of solids and structures, including:
1) Stress analysis and design for structures [8,13,

163,186];
2) Vibration and dynamic analysis of various types of

structures [14,47,48,67,71,72,100–108,166,176–178,
206];
3) Hyperelasticity and biomechanics [35,56,156–

162,187];
4) Elastic-plastic analyses [23,57,205];
5) Visco-elastoplastic analysis [24,28];
6) Contact analyses [50,51,58,59,165];
7) Heat transfer and thermo-mechanical problems [128–

140,169];
8) Plates and shells [19,54,61–71,172,173];
9) Composites [68,70,72–74];
10) Structural or vibro-acoustics [109–124];
11) Limit and shakedown analyses [75,76,185];
12) Fracture mechanics, crack propagation, and fatigue

[31,32,34,77–97,174];
13) Crystal plasticity modeling [36,60];
14) Stochastic analyses [98,99];
15) Impact problems [125];
16) Piezoelectricity and photonic devices [141–146];
17) Fluid-structure interactions [30,147–155];
18) Adaptive analyses [51,76,90,126,127];
19) Fluid dynamics [171] [175];
20) Porous media [182];
21) Topology optimization [142,143,184].
A detailed review on these models and their applications

of S-FEM are referred to a recent review article [167].
Theoretical studies on stability and convergence for S-
FEM can be found in [180,181,183]. Works on code
development of S-FEM are available at [5,8,38,163,
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170,179,181,190]. Some basic codes of S-FEM are
available for free download at GRLab’s website: http://
www.ase.uc.edu/~liugr.
The formulation of S-FEM can be viewed as a typical

weakened weak (W 2) formulation that were used for
various types of problems [38–45,200]. The W 2 formula-
tion consists of two layers of “weakening” treatments: one
for the system equation in which the displacements are
approximated and used in a Galerkin weakform, and
another for the strain approximation based the assumed
displacements via strain smoothing and using the Gauss
divergence theorem. The former make the model stiffer
known stiffing effects [4], and the later makes the model
softer known as the softening effects [44,45]. Because the
strain approximation uses only the assumed displacements
and the geometric information of the smoothing domain
boundary, no addition degrees of freedom (DoFs) are
introduced. These two complimentary stiffing and soft-
ening effects enable the S-FEM a number of unique
features listed as follows:
1) S-FEM models are theoretically proven softer than

the FEM counterparts using the same mesh [5,8]. They are
found often producing more accurate solutions, higher
convergence rates, and much less sensitive to mesh
distortion. If the S-FEM model is a stiffer model (such as
the ES-FEM and FS-FEM), the solution is always more
accurate than the FEM counterpart.
2) The NS-FEM is a softer model, and offers an efficient

and practical means to produce upper boundary solutions
[9–11]. Together with the lower bound solution of FEM,
one can now bound the solutions from both sides, which is
important for solution error quantification.
3) Combining the soft effects of NS-FEM and stiff

effects of FEM in the formulation stage, one can create
models (such as the αFEM) that can produce “close-to-
exact” solutions [18,25,109,168,178].
4) S-FEM models work exceptionally well with Trian-

gular (2D) or Tetrahedral (3D) mesh, or T-mesh, that can
be automatically generated. This is because of the use of
W 2 formulation [38,40]. They are thus ideal for automation
in computations and adaptive analyses, and hence has
profound impact on AI-assisted modeling and simulation.
In addition, S-FEM uses also polygonal elements of
arbitrary shape.
5) The NS-FEM is found naturally “volumetric-locking-

free” [11,195,196], which is important for simulation
nonlinear problems of soft materials, such as bio-tissues.
6) The S-FEM can be viewed as a typical case of W 2

model, and hence only the shape function values are
needed in the formulation, and no derivatives of the shape
functions are required. Therefore, no mapping (and hence
no Jacobian matrix is involved) is needed in S-FEM. This
Jacobian-free feature leads to insensitivity to mesh
distortion, which is important for large deformation
nonlinear problems.
7) Most importantly, one can in fact purposely design an

S-FEM model to obtain solutions with special properties.
The S-FEM is a framework that enable the design of
models for solutions with desired properties and unique
features. This novel concept of numerical model on-
demand may drastically change the landscape of modeling
and simulation.

2 S-FEM formulations

2.1 Strain smoothing

Consider a problem of solid mechanics defined in problem
domain W and bounded by G. The problem is first divided
into a set of elements to form a mesh often in the similar
manner as in the standard FEM. Because the S-FEM uses
smoothed strains, one needs to create smoothing domains
on top of the element mesh. The problem domain is thus
divided further into a set of non-overlapping and non-gap
smoothing domains Ωs

kðk ¼ 1,2,:::,NsÞ bounded by Γs
k ,

such that Ω ¼ [Ns

k¼1
Ωs

k and Ωs
i \ Ωs

j ¼ Æ for i≠j, where Ns

is the number of the smoothing domains. The smoothed
strain can then obtained for point xC in a smoothed domain
using

εkðxCÞ ¼ !
Ωs

k

εhðxÞ|ffl{zffl}
compatible strains

Wkðx – xCÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
weight function

dΩ

¼ !
Ωs

k

Ldu
hðxÞ|fflfflfflffl{zfflfflfflffl}

εhðxÞ

Wkðx – xCÞdΩ, (1)

where εhðxÞ is the compatible strain obtained using the
assumed displacements by differentiation, and Ld is a
matrix of differential operators. It is given as follows,
respectively, for 1D, 2D, and 3D problems.

Ld ¼
∂
∂x

for 1D, Ld ¼

∂
∂x

0

0
∂
∂y

∂
∂y

∂
∂x

2
6666664

3
7777775 for 2D,

Ld ¼

∂=∂x 0 0

0 ∂=∂y 0

0 0 ∂=∂z

∂=∂y ∂=∂x 0

0 ∂=∂z ∂=∂y

∂=∂z 0 ∂=∂x

2
66666666664

3
77777777775

for 3D: (2)

In Eq. (1),Wkðx – xCÞ is a weight or smoothing function
that satisfies the positivity and unity conditions:
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Wkðx – xCÞ³0 and !
Ωs

k

Wkðx – xCÞdΩ ¼ 1: (3)

The following Heaviside-type function is the simplest,
and most widely used as the smoothing function:

Wkðx – xCÞ ¼
1=Vs

k , x 2 Ωs
k

0, x =2Ωs
k

(
, (4)

where Vs
k ¼ !Ωs

k

dΩ is the volume (for 3D) or the area (for

2D) or the length (for 1D) of the smoothing domain Ωs
k .

Substituting Eq. (4) into Eq. (1) and then using the
divergence theorem, we obtain the smoothed strains:

εk|{z}
constant in Ωs

k

¼ 1

Vs
k
!

Ωs
k

Ldu
hðxÞdΩ

¼ 1

Vs
k
!

Γs
k

LnðxÞuhðxÞdΓ, (5)

where uh is the assumed displacement vector, which is
obtained using simply the PIM [5,6] in the S-FEM. When
3-noded triangular (Tr3) or 4-noded tetrahedral elements
(Te4) are used, uh can also be computed using exactly the
same way as in the FEM using the shape functions created
based on the physical coordinate system [4]. LnðxÞ is a
matrix containing the components of the unit outward
normal on the smoothing domain boundary Γs

k :

LnðxÞ ¼ n for 1D, LnðxÞ ¼
nsx 0

0 nsy

nsy nsx

2
64

3
75 for 2D,

LnðxÞ ¼

nsx 0 0

0 nsy 0

0 0 nsz

nsy nsx 0

0 nsz nsy

nsz 0 nsx

2
66666666664

3
77777777775

for 3D, (6)

where nsx, nsy, and nsz are the unit outward normal
components on Γs

k , respectively, on the x-, y-, and z-axis.
It is shown in Eq. (5) that the strain is computed via
integration rather than differentiation. This is the one
“weakening” operation at the stage of strain approxima-
tion. We note here that when the smoothing domain shrinks
to zero, we have

εk ¼ lim
Ωs

k ↕ ↓0

1

Vs
k
!

Ωs
k

εhðxÞdΩ ¼ εh xCð Þ, (7)

which means that the smoothed strain becomes the
compatible strain, implying that the FEM is in fact a

special case of S-FEM at the limit when all the smoothing
domains approach zero.
Apart from using the Heaviside-type function, one may

use linear smoothing functions of equilateral triangle
shape, as long as Eq. (3) is satisfied. In such a case, the
smoothed strain is calculated via domain integration rather
than a boundary integration.

2.2 Creation of different types of smoothed domains

S-FEM models use smoothed strains that are computed
using Eq. (5) and the smoothing domains created on top of
an element mesh. The art of the S-FEM is creative ways to
form different types of smoothing domains, leading to
different S-FEM models.
In a CS-FEM model, smoothing domains reside within

the elements. In the CS-FEM using 4-noded quadrilateral
(Q4) elements, for example, typical smoothing domains
can be created by dividing the elements into smaller cells,
as shown in Fig. 1, where one Q4 elements is divided into
1, 2, 3, 4, 8, or 16 smoothing cells (SCs). Each of the
smoothing domains is bounded by four line boundary
segments. In most applications, four SCs for each element
are often used. Use of one SC can be more efficient and
sometimes can produce upper bound solutions, but may
have the so-called “hourglass” instability. It is also possible
to used 4 SCs for some elements and 1 CS for other
elements in the mesh, but this idea has not yet been
implemented and studied in detail so far.
From Eq. (5), it is clear that the smoothing domain is

used to evaluate the smoothed strains, the displacement
values on the smoothing domain boundary is used in such
evaluation, and the displacement values are interpolated
using the nodal displacements. Because of this, the
smoothed strains for the smoothing domain relate to all
the nodes of the elements that have contribution to the
smoothing domain. Such elements are called “supporting
elements” and such nodes are called “supporting nodes” of
the smoothing domain. For any smoothing cell in a Q4
element, the supporting element is 1, and the supporting
nodes is 4.
Note that when Tr3-meshes are used, the CS-FEM will

be exactly the same of as the FEM counterparts. This is
because the compatible strains in Tr3 element is constant,
and any cell-based smoothing operation can only produce
the same constant smoothed strain. Similarly, when Te4-
meshes are used, the 3D CS-FEM will be exactly the same
as the 3D FEM counterparts.
When 3-noded triangular (Tr3) elements are used, one

may create smoothing domains based on edges, leading to
an ES-FEM-Tr3 models, as shown in Fig. 2 for 2D
problems. In this case, each edge has a smoothing domain,
and the total number of smoothing domains is exactly the
number of edges in the mesh. A smoothing domain for an
edge that is inside the problem domain, the edge-based
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smoothing domain is a four-sided polygon, the number of
supporting elements is 2, and the smoothing domain
boundary has 4 line segments. The number of supporting
nodes of an interior edge-based smoothing domain is 4.
For edge k, they are F, G, D, and E. For an edge on the
problem domain boundary, and it is a triangle and the

smoothing domain boundary has only 3 line segments. The
number of supporting element is 1, and the supporting
nodes is 3 for a boundary edge-based smoothing domain.
For edge l, these are A, O, and C.
An NS-FEM-Tr3 model uses node-based smoothing

domains that are created based on nodes in a Tr3-mesh, as

Fig. 1 Smoothing domains used in a CS-FEM model. A quadrilateral element may be divided into smoothing cells (SCs) by connecting
the mid-segment-points of opposite segments of smoothing domains [36]. (a) nSC ¼ 1; (b) nSC ¼ 2; (c) nSC ¼ 3; (d) nSC ¼ 4; (e) nSC ¼ 8;
(f) nSC ¼ 16 (from [98]). In applications, four SCs for each element are often used. Use of one SC can be more efficient and sometimes can
produce upper bound solutions, but may have the so-called “hourglass” instability

Fig. 2 Edge-based smoothing domains on a Tr3-mesh. Shaded areas are typical smoothing domains. The smoothing domain Ωs
l is for

edge l on the problem domain boundary, and is a triangle AOC for a boundary edge. Smoothing domain Ωs
k is for interior edge k that is

inside the problem domain, and it is a four-sided convex polygon DPFQ (from Ref. [167])

460 Front. Struct. Civ. Eng. 2019, 13(2): 456–477



shown in Fig. 3. In this case, the number of the smoothing
domain is the same as the number of all the nodes in the
Tr3-mesh. A smoothing domain forms a polygon bounded
by multiple line segments. Any segment connects the
midpoint of an edge to a center of a Tr3 element connected
to the node. For the shaded node-based smoothing domain
shown in Fig. 3, it is supported by 5 elements and it is thus
bounded by 10 line segments. The number of supporting
nodes of the interior edge-based smoothing domain k is 6,
and they are A, B, C, D, E, and k. A node-based smoothing
domain for a node on the problem boundary can be one-
sided, and the number of supporting nodes is usually

smaller. In general a node-based smoothing domain may
have contributions from any number of elements, as shown
in Fig. 3. Mostly, one to seven elements.
For 3D problems, one may create edge-based S-FEM

using 4-noded tetrahedral mesh, known as ES-FEM-Te4,
as shown in Fig. 4. The supporting nodes of an edge-based
smoothing domain are all the nodes of the element directly
connected to the edge. We can also create node-based
smoothing domains for NS-FEM-Te4 models, as shown in
Fig. 5. In this case, the supporting nodes of a node-based
smoothing domain are all the nodes of the element directly
connected to the node. In addition, one may create

Fig. 3 Node-based smoothing domains for an NS-FEM model using Tr3-mesh. The smoothing domain Ωs
k for node k is a polygon with

2nek sides (where n
e
k is the number of elements surrounding node k) (from Ref. [167])

Fig. 4 Edge-based smoothing domain on a Te4-mesh for ES-FEM-Te4 model. Only the part of the smoothing domain Ωs
k,j for edge k is

shown. It is located inside element j, and is a double tetrahedron ACPOQ. If there are other elements connected to edge k, similar partial
smoothing domains need to be constructed (from Ref. [167])
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smoothing domains associated with the faces of the Te4
elements, known as the FS-FEM-Te4 model. Figure 6
shows a part of a face-based smoothing domain Ωs

k created
by connecting the three nodes of face (A,B,C) to the centers
of these two neighboring elements (P,Q). The supporting
nodes of a face-based smoothing domain are all the nodes
of the element directly connected to the face. For an
interior face, the number of supporting nodes is 5, and for a
face on the problem boundary, the number is 4, because
only one Te4 element is involved in that smoothing
domain.
Table 1 summaries several types of smoothing domains.

More detailed procedure for constructing the smoothing
domains can be found in Ref. [8].
Figures 7 and 8 show types of smoothing domains

created on a 3D mechanical component (an engine

connection bar and socket, respectively) discretized
with 4-noded tetrahedral elements, together with some
solutions obtained using S-FEM models. Details on the
formulation of an S-FEM model are given in the next
Section.

2.3 S-FEM strain matrix (B-matrix)

We are now ready to form the strain-displacement matrix
or B-matrix. For better clarity, we use 2D problem as an
example. We write the assumed displacement uhðxÞ in
shape functions NIðxÞ that satisfies the most essential
condition of partitions of unity [199] and the nodal
displacements dI for all the nodes of the elements
contributing to the smoothing domain (SD):

Fig. 5 Node-based smoothing domain on a part of Te4-mesh. Only part of the smoothing domain Ωs
k,j is shown. It is for node k in the

element j, and it is a polyhedron AELGMFKO. If there are other elements connected to node k, similar partial smoothing domains need to
be constructed (from Ref. [167])

Fig. 6 Schematic illustration of face-based smoothing domains based on tetrahedral elements: a face-based smoothing domain Ωs
k

created from two adjacent tetrahedral elements based upon their interface k (from Ref. [167])
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εk ¼
X
I 2 Snk

BIkdIk , (8)

where Snk is the set of supporting nodes of Ωs
k , and the

smoothed B-matrix can be computed by

BIk ¼
1

Vs
k
!

Γ s
k

ns ðxÞNIðxÞdΓ ¼
bIkx 0 bIky

0 bIky bIkx

" #T

, (9)

where Vs
k is the area of the kth smoothing domain.

Table 1 Existing types of smoothing domains (SD’s) used in S-FEM models

Type* method for creation and number of
SD’s (Ns)

S-FEM models dimension of problem; properties

cell-based SD (CSD) SD’s or smoothing cells (SC’s) are
divided from and located within the

elements (Ns ¼
XNe

i¼1

nisc,

nisc ¼ 1,2,3,4,:::)

CS-FEM
nCS-FEM

1D, 2D, 3D
softer; high accuracy; insensitive to

mesh distortion

edge-based SD (ESD) SD’s are created based on edges by
connecting portions of the surrounding
elements sharing the associated edge
(Ns ¼ Nedge)

ES-FEM 2D, 3D
softer; very high accuracy; less insen-

sitive to mesh distortion

node-based SD (NSD) SD’s are created based on nodes by
connecting portions of the surrounding
elements sharing the associated node
(Ns ¼ Nnode)

NS-FEM 1D, 2D, 3D
soft; upper bound; very insensitive to
mesh distortion; volumetric locking

free

face-based SD (FSD) SD’s are created based on faces by
connecting portions of the surrounding
elements sharing the associated face
(Ns ¼ Nface)

FS-FEM 3D
softer; very high accuracy; less insen-

sitive to mesh distortion

*Note: There are S-FEM models that use combinations of different types of SDs, such as selective S-FEM, aFEM, and bFEM.

Fig. 7 Types of smoothing domains created on a 3D mechanical component (engine connection bar) discretized with 4-noded
tetrahedral elements. (a) Face-based smoothing domains (on the surface the FS smoothing domains cannot be seen, and hence it appears
like the element mesh); (b) edge-based smoothing domains; (c) node-based smoothing domains; (d) an example of a normal stress σxx
solution using the ES-FEM-Te4 model [163]
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bIkh ¼
1

Vs
k
!

Γ s
k

NIðxÞnshðxÞdΓ

¼ 1

Vs
k

XnsΓ
p¼1

nsh,pNI ðxGp Þlsp, h ¼ x,y, (10)

in which nsΓ is the total number of the boundary segments
Γs
k,p 2 Γs

k , x
G
p is the Gauss point on Γs

k,p. The length and
outward unit normal of Γs

k,p are denoted as lsp and nsh,p,
respectively. Here we use 1-point Gauss quadrature to
numerically perform the integration along each segment. It
is clearly seen in Eq. (10) that in computing B-matrix,
derivatives of shape functions NI are not required, and we
need only the shape functions values and only for the
points on the SD boundary segments. Once the SDs are

created, one knows exactly the supporting elements and
nodes for each SD, and hence the shape function values for
all the supporting nodes at any point on the SD boundary
segments can be easily computed using the PIM [6,8]. The
compatibility is not a concern at all for an S-FEM model.
This is because the PIM is performed for points on the SD
boundary, it satisfies the continuity requirement for any
function being in a G1

h space, and hence the stability is
ensured [5,6].
For the case of using 4 SDs in a Q4 element (shown in

Fig. 9), the values of the 4 nodal shape functions at the 12
Gauss points on these boundary segments of the 4 SDs can
be computed by simple PIM (in fact a simple inspection),
as listed in the Table 3 [8]. The key point here is that we do
not need to construct these shape functions of each of these
4 nodes (this would be, in fact, a nontrivial task, because it

Fig. 8 Types of smoothing domains created on a 3D mechanical component (socket) discretized with 4-noded tetrahedral elements. (a)
Face-based smoothing domains (on the surface the FS smoothing domains cannot be seen, and hence it appears like the element mesh); (b)
edge-based smoothing domains; (c) node-based smoothing domains; (d) an example of a solution of displacement in the z-direction using
the FS-FEM-Te4 model [163]

464 Front. Struct. Civ. Eng. 2019, 13(2): 456–477



needs on in the physical coordinate system, and hence
mapping is required as in the FEM). Note also that
mapping is not required in S-FEM. Therefore, it is more
computationally efficient and simpler in this regards. Such
a PIM can also be used for any arbitrary polygonal
elements, as the 6-sided polygonal element shown in Fig. 9
(a), and the results for all these Gauss points are listed in
Table 4.
Note that the summation in Eq. (8) is in fact an

“assembly” or a “node-matched” summation. As an
example, let us consider an ES-FEM model for 2D
problems. In this case, the (shaded) edge-based SD DPFQ
shown in Fig. 2 is supported by 4 nodes D, E, F, G from
two Tr3 elements DEF and DFG. The smoothed B-matrix
for the whole SD Ωs

k can then be written as Ref. [8]

Bk ¼ BDkBEkBFkBGk �:
�

(11)

All there sub-matrices in the right-hand-side of the
forgoing equation can be computed easily using Eqs. (9)
and (10). For the ES-FEM-T3 model, only one Gauss point
is required along any boundary segment, because the shape
function changes linearly and the unit normal vector is a
constant along the segments.
For Tr3 elements, the area of a SD can be calculated

using the areas of the elements supporting the SD:

Vs
k ¼ !

Ωs
k

dΩ ¼ 1

3

Xnek
j¼1

Ve
j , (12)

where nek is the number of elements connected to edge k
and Ve

j is the area of an element.
The above is the standard way to compute the smoothed

B-matrix. Alternatively, one may use the area-weighted
summation method, if Tr3 elements and linear PIM is used.
In this method, BIk is computed using directly all the
compatible FE Be_j

I for the jth element that is connected to
edge k. Be_j

I for node I can be evaluated using the shape
function of node I in the jth element:

Table 2 Minimum number of smoothing domains Nmin
s for solid

mechanics problems with nt (unconstrained) total nodes [5,8]

dimension of the problem minimum number of smoothing domains

1D Nmin
s = nt

2D Nmin
s = 2nt/3

3D Nmin
s = 3nt/6 = nt/2

Table 3 Values of 4 nodal shape functions at different points within a Q4 element [8] (shown in Fig. 9(a))

point N1 N2 N3 N4 description

1 1.0 0 0 0 field node

2 0 1.0 0 0 field node

3 0 0 1.0 0 field node

4 0 0 0 1.0 field node

5 1/2 1/2 0 0 side midpoint

6 0 1/2 1/2 0 side midpoint

7 0 0 1/2 1/2 side midpoint

8 1/2 0 0 1/2 side midpoint

9 1/4 1/4 1/4 1/4 intersection of two bi-medians

g1 3/4 1/4 0 0 Gauss point (mid-segment point of Γs
k,p)

g2 3/8 3/8 1/8 1/8 Gauss point (mid-segment point of Γs
k,p)

g3 3/8 1/8 1/8 3/8 Gauss point (mid-segment point of Γs
k,p)

g4 3/4 0 0 1/4 Gauss point (mid-segment point of Γs
k,p)

g5 1/4 3/4 0 0 Gauss point (mid-segment point of Γs
k,p)

g6 0 3/4 1/4 0 Gauss point (mid-segment point of Γs
k,p)

g7 1/8 3/8 3/8 1/8 Gauss point (mid-segment point of Γs
k,p)

g8 0 1/4 3/4 0 Gauss point (mid-segment point of Γs
k,p)

g9 0 0 3/4 1/4 Gauss point (mid-segment point of Γs
k,p)

g10 1/8 1/8 3/8 3/8 Gauss point (mid-segment point of Γs
k,p)

g11 0 0 1/4 3/4 Gauss point (mid-segment point of Γs
k,p)

g12 1/4 0 0 3/4 Gauss point (mid-segment point of Γs
k,p)
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Be_j
I ¼ LdNI ðxÞ: (13)

The sub-smoothed B-matrix for node I is then computed
using

BIk ¼
1

Vs
k

Xnek
j¼1

1

3
Ve
j B

e_j
I

� �
: (14)

For the example in Fig. 2, elements DEF and DFG

support the red shaded SD Ωs
k . However, element DFG is

not related to node E. When BEk is computed, it has only
1=3 contribution of Be_DEF

E from element DEF. Likewise,

when BGk is computed, 1=3 of Be_DEG
G is contributed from

DFG. However, when BDk or BFk is computed, we have
contributions from both elements, as they all share nodesD
and F. The smoothed B-matrix for the whole SDΩs

k can be
written in the following form.

Bk ¼
1

3
Be_DEF
D þ 1

3
Be_DEG
D|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

BDk

1

3
Be_DEF
E|fflfflfflffl{zfflfflfflffl}
BEk

1

3
Be_DEF
F þ 1

3
Be_DEG
F|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

BFk

1

3
Be_DEG
G|fflfflfflffl{zfflfflfflffl}
BGk

2
6664

3
7775: (15)

We noted that Eqs. (11) and (15) are identical, if Tr3
elements (linear PIM) are used. Equation (11) is standard
and applicable to other types of elements and higher order
PIMs (with of course more Gauss points for the
integrations).

2.4 S-FEM stiffness matrix

The computation and formation of the smoothed stiffness
matrix K is quite similar to those procedures in the

standard FEM. It can be assembled from the contributions
of the sub-stiffness-matrices from all the smoothing
domains,

K IJ ¼ !
Ω
BT

I cBJdΩ ¼
XNs

k¼1

!
Ωs

k

BT
IkcBJkdΩ

� �

¼
XNs

k¼1

BT
IkcBJkV

s
k|fflfflfflfflfflffl{zfflfflfflfflfflffl}

KIJk

, (16)

Table 4 Values of six nodal shape functions at different points within a 6-sided polygonal element [8] (shown in Fig. 9(b))

point N1’ N2’ N3’ N4’ N5’ N6’ description

1’ 1.0 0 0 0 0 0 field node

2’ 0 1.0 0 0 0 0 field node

3’ 0 0 1.0 0 0 0 field node

4’ 0 0 0 1.0 0 0 field node

5’ 0 0 0 0 1.0 0 field node

6’ 0 0 0 0 0 1.0 field node

O 1/6 1/6 1/6 1/6 1/6 1/6 centroid point

g1’ 7/12 1/12 1/12 1/12 1/12 1/12 Gauss point (mid-segment point of Γs
k,p)

g2’ 1/2 1/2 0 0 0 0 Gauss point (mid-segment point of Γs
k,p)

g3’ 1/12 7/12 1/12 1/12 1/12 1/12 Gauss point (mid-segment point of Γs
k,p)

g4’ 0 1/2 1/2 0 0 0 Gauss point (mid-segment point of Γs
k,p)

g5’ 1/12 1/12 7/12 1/12 1/12 1/12 Gauss point (mid-segment point of Γs
k,p)

g6’ 0 0 1/2 1/2 0 0 Gauss point (mid-segment point of Γs
k,p)

g7’ 1/12 1/12 1/12 7/12 1/12 1/12 Gauss point (mid-segment point of Γs
k,p)

g8’ 0 0 0 1/2 1/2 0 Gauss point (mid-segment point of Γs
k,p)

g9’ 1/12 1/12 1/12 1/12 7/12 1/12 Gauss point (mid-segment point of Γs
k,p)

g10’ 0 0 0 0 1/2 1/2 Gauss point (mid-segment point of Γs
k,p)

g11’ 1/12 1/12 1/12 1/12 1/12 7/12 Gauss point (mid-segment point of Γs
k,p)

g12’ 1/2 0 0 0 0 1/2 Gauss point (mid-segment point of Γs
k,p)
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The summation is a node-matched summation at the
stiffness matrix level. The derivation of the above equation
is similar as that in the FEM. The main difference is that
FEM is element based, while the S-FEM is smoothing-
domain based. The existing assembly algorithms in the
FEM can be used for S-FEM by simply treating the
smoothing domains as “elements”. When I and J are “far”
apart,KIJ vanishes. Thus, the global stiffness matrixK is a
sparse (assuming it is formed). It is banded when the nodes
are properly numbered.

2.5 S-FEM discretized system equations

Consider now dynamic problems for solids and structures,
the discretized system of equations in an S-FEM can be
expressed as the following set of 2nd order differential
equations with respect to time.

Kd þ ~C _d þ ~M€d ¼ ~f , (17)

where ~M is the mass matrix obtained using

~M ¼ !
Ω

NT�NdΩ, (18)

in which � is the mass density, and N is the matrix of nodal
shape functions of all nodes [4,8]. Matrix ~C is the damping
matrix computed using

~C ¼ !
Ω

NTcdNdΩ  , (19)

where cd is the damping coefficient of the material. Vector
~f is the external force vector acting at all the nodes in the
problem domain. It has entries of

~f I ¼ !
Ω

NT
I ðxÞbdΩþ !

Γt

NT
I ðxÞtdΓ, (20)

where b is the distributed body force vector, and the t is the
traction vector applied on the force boundary of the
problem domain.
In the S-FEM, the smoothing operation is only applied

to the derivatives of the displacement (or shape) functions.
We do not perform any additional treatments to the
displacement function itself. Therefore, the mass matrix,
damping matrix, and the force vectors are computed in
exactly the same way as in the standard FEM. The
damping matrix may also be modeled as in the standard
FEM. For example using the so-called Rayleigh damping.
In such a case the damping matrix ~C is assumed to be a
linear combination of ~M and K,

~C ¼ α ~M þ βK, (21)

where α and β are the Rayleigh damping coefficients
determined by experiments.

The stiffness matrix K is a symmetric positive definite
(SPD), after sufficient displacement boundary conditions
are imposed [4,8], as long as the number of the smoothing
domains satisfy the following table of stability conditions.
The bandwidth of K depends on the types of S-FEM

model. For CS-FEM-Q4, it is the same as the FEM. For
ES-FEM-Tr3, the bandwidth is about 30% larger than the
FEM counterpart. For NS-FEM-Tr3, the bandwidth is
doubled. Therefore, if direct solver is used for Eq. (17),
NS-FEM is expected slower than ES-FEM that is also
slower than the FEM counterpart using the same mesh. The
S-FEM can, however, stand out by producing more
accurate solutions and/or offering unique solution proper-
ties.
Note that when explicit solver is used for dynamic

problems, we do not need to form matrix K during the
computation. In such cases, the computation time is largely
determined by the number of smoothing domains (ele-
ments in the case of FEM). In this case, NS-FEM can be
faster than ES-FEM that is also faster than the FEM
counterpart using the same mesh. This is because for a
mesh the number of nodes is usually smaller than the
number of elements and that even smaller than the number
of edges. The S-FEM can also stands out further by
producing more accurate solutions or offer unique solution
properties.

3 Solution properties of S-FEM models

3.1 Example 1: 2D cantilever beam

Next we study a benchmarking mechanics problem known
as 2D cantilever beam, which has an analytical solution
given in [8,191]. The beam is a simple rectangular shape
with a length L = 48 m and height D = 12 m is subjected to
a parabolic traction at the free end as in Fig. 10. When we
assume the thickness is very small comparing with its
height, and thus it is considered as a 2D plane-stress
problem. Because we have exact solution, we can used it to
examine our numerical models in detail.
Convergence of numerical solution in the strain energy

are obtained using various numerical methods for this 2D
cantilever problem, and the results are plotted in Fig. 11. A
set of uniformly distributed 3-noded triangular elements
are used to discretize the problem domain, and the density
of the mesh is controlled by the DoFs. It is found that the
FEM solution produces a lower bound, the NS-FEM gives
an upper bound, and the ES-FEM gives ultra-accurate
solution. All these numerical models use exactly the same
element mesh, but different types of smoothing domains
(note that the FEM is in fact the same as CS-FEM-Tr3).
The findings from this example are in-line with the
predictions by our S-FEM theory. This demonstrates an
important point that we can now design numerical models
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with different properties by simply using different types of
smoothing domains.

3.2 Example 2: 3D cantilever cubic solid

We next consider a 3D mechanics problem of cantilever

cubic solid. Its three dimensions are L =W =H = 1m, and it
is subjected to a uniform pressure loading on the upper face
shown in Fig. 12. The cubic solid is fixed on its left face.
Young’s modulus of the solid material is E ¼ 1:0�
103  N=m2 and Poisson’s ratio is � ¼ 0:3. This problem
seems simple, but there is no exact solution to it. To
conduct a detailed analysis for our numerical methods, we
need to use a reference solution. Almeida Pereira has
provided such a solution using a solution obtained with a
very fine mesh of hexahedral super-elements, together with
a procedure of Richardson’s extrapolation [191]. Such a
reference solution is a good approximation of the exact
solution and are used by many for examining numerical
models. The solution in strain energy is 0.95093.
Figure 13 plots the convergence curves of numerical

solutions obtained using different numerical models in

Fig. 9 Positions of Gauss points at mid-segment-points on segments of smoothing domains. (a) Four quadrilateral smoothing domains in
a Q4 element; (b) six triangular smoothing domains in a 6-sided polygonal element (from Ref. [8])

Fig. 10 A 2D cantilever beam loaded by a downward para-
bolically distributed shear stress at the right end

Fig. 11 Convergence of numerical solution in the strain energy
for the 2D cantilever problem (from Ref. [163])

Fig. 12 A 3D cantilever cubic solid fixed on its left face, and it is
subjected to a uniformly distributed pressure loading on the top
surface
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strain energy for the 3D cantilever cubic solid. A set of
uniformly distributed 4-noded tetrahedral elements are
used to discretize the problem domain, and the density of
the mesh is controlled by the DoFs. It is found again that
the FEM solution is a lower bound, the NS-FEM gives an
upper bound, and the ES-FEM gives ultra-accurate
solution. The solution from the FS-FEM is also much
more accurate than the FEM counterpart. The all use
exactly the same element mesh, but different types of
smoothing domain. The findings are again in-line with the
predictions by the S-FEM theory. This demonstrates again
that we can now design numerical models with different
properties by simply using different types of smoothing
domains.
Figure 14 shown an important and useful idea based on

the properties of S-FEMmodels. In the S-FEM framework,
we have now two knobs: one tuns the stiffening effects by
properly assuming the displacement field for the model,
and another tuns the softening effects by strain smoothing
operations (via using different types of smoothing
domains). To obtain an lower bound solution, we tun up

the left knob, and to obtained a upper bound solution, we
tun the right knob. In theory, one can produce an S-FEM
model by design that can produce exact solution at least in
a norm for a mechanics problem for solids and structures.

4 Moving forward

The development of S-FEM has already opened a new
window of opportunity to develop the next generation of
computational methods. Moving forward, it is the author’s
opinion that the S-FEM will advances fast in the following
areas:
1) Development of commercial software packages using

S-FEM technology. Because S-FEM works well with T-
mesh, we need now only use T-mesh that can be
automatically generated for complex geometry. This is
also extremely important for our dream for fully-automa-
tion in computation, modeling, and simulation. The
manual operations from the analyst of a project will be
drastically reduced. S-FEM software and the pre-processes
can also be much simpler compared to the FEM counter-
part, because of the use of simplest T-mesh. Some of the
basic S-FEM codes for various models are available for
free download (a simple registration for records is needed)
at GRLab’s website, which offers a good initial starting
point.
2) The automation capability of S-FEM offers conve-

niences in creating real-time AI models for mechanics
problems, based on neural networks [207,208]. The AI
methods are basically data-based, and the current biggest
bottleneck problem with AI is the difficulty to obtain a
large number of training samples. The S-FEM is physics-
based, and it can be used for generating training samples
for neural networks, by creating automatically S-FEM
models using T-meshes. Because manual operations are
drastically reduced for model creation, one can create as
many training samples as needed. This is particularly
important for inverse problems [209].
3) A lot more intensive applications of S-FEM is

expected in practical applications in sciences and engi-

Fig. 13 Convergence of numerical solution in strain energy for
the 3D cantilever cubic solid (from Ref. [163])

Fig. 14 In the S-FEM framework, we have now two knobs: one on the left tuns the stiffening effects by properly assuming the
displacement field for the model, and another on the right tuns the softening effects by strain smoothing operations
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neering fields, especially problems require adaptive
analyses. Even more innovative ways to construct new
types of smoothing domains. So far the smoothing
domains in the existing S-FEM models are created in
tight relations with the element mesh. This is not necessary.
In theory, the smoothing domains can be independent of
element mesh. A recent work by Liu’s group has made
some initial attempt in this direction [210].
4) Higher order S-FEM models. The S-FEM models

developed so far are mainly linear models (linear PIM
shape functions, and SD-based piecewise linear strain
field). Such linear S-FEM models shall suffice for most of
the applications (based on our experiences in using FEM,
linear and bilinear models are most widely used, even
though higher FEM elements are available in most
software packages). However, higher order models will
be an important addition. Liu has recently developed a
pick-out theory and a systematic approach to construct
higher order smoothed strain field [211]. The development
of higher order S-FEM models is already on the way. The
use of robust radial basis functions can also be a new
direction of development for more robust and higher order
formulations [194,200].
5) Most importantly we may need to develop ideas to

make full use of the S-FEM frame work that enables us to
develop models in convenient manner based the demand of
the analyst on the required solution property. This requires
a change on the perception of a numerical model.

5 Concluding remarks

This article first provides a brief review on the widely used
FEM, and then a concise and easy-to-following presenta-
tion of key minimum necessary formulae used in the S-
FEM. Following this concise introduction, reader shall be
able to understand the essence of S-FEM and code S-FEM
models based on the basic codes provided at GRLab’s
website. We provided also new directions on further
development of S-FEM technology.
A number of important properties and unique features of

S-FEM models are discussed in detail, which helps readers
to understand better and appreciate the method. Most
importantly, a concept of numerical model on-demand
based on the S-FEM framework is proposed that may
drastically change the landscape of modeling and simula-
tion. One can in fact purposely design an S-FEM model to
obtain solutions with special properties. This changes the
perception of a numerical model. We used to treat a
numerical model as merely tool for analysis to optimize
our product design. With the S-FEM framework, we can
now have a means to optimize the tool itself for desired
solutions, which can next be utilized for much more
reliable analyses and then to optimize our product design
with high confidence. For example, for an automatically

generated T-mesh, one can create automatically different
types of smoothing domains [163,190]. By invoking NS-
FEM one gets upper bound solution, FEM for lower bound
solution, and ES-FEM for solutions with high accuracy.
This new concept of numerical model On-Demand is
valuable for full automation in computations and adaptive
analyses, and hence has profound impact on the future AI-
assisted modeling and simulation.
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