Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2020, Vol. 14 Issue (5) : 1131-1151     https://doi.org/10.1007/s11709-020-0660-1
RESEARCH ARTICLE
Shear wall layout optimization of tall buildings using Quantum Charged System Search
Siamak TALATAHARI1,2(), Mahdi RABIEI1
1. Department of Civil Engineering, University of Tabriz, Tabriz 5166616471, Iran
2. Engineering Faculty, Near East University, Nicosia 99138, Turkey
Download: PDF(2130 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a developed meta-heuristic algorithm to optimize the shear walls of tall reinforced concrete buildings. These types of walls are considered as lateral resistant elements. In this paper, Quantum Charged System Search (QCSS) algorithm is presented as a new optimization method and used to improve the convergence capability of the original Charged System Search. The cost of tall building is taken as the objective function. Since the design of the lateral system plays a major role in the performance of the tall buildings, this paper proposes a unique computational technique that, unlike available works, focuses on structural efficiency or architectural design. This technique considers both structural and architectural requirements such as minimum structural costs, torsional effects, flexural and shear resistance, lateral deflection, openings and accessibility. The robustness of the new algorithm is demonstrated by comparing the outcomes of the QCSS with those of its standard algorithm.

Keywords Quantum Charged System Search      shear wall      layout optimization      tall buildings     
Corresponding Author(s): Siamak TALATAHARI   
Just Accepted Date: 03 September 2020   Online First Date: 20 October 2020    Issue Date: 16 November 2020
 Cite this article:   
Siamak TALATAHARI,Mahdi RABIEI. Shear wall layout optimization of tall buildings using Quantum Charged System Search[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1131-1151.
 URL:  
http://journal.hep.com.cn/fsce/EN/10.1007/s11709-020-0660-1
http://journal.hep.com.cn/fsce/EN/Y2020/V14/I5/1131
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Siamak TALATAHARI
Mahdi RABIEI
Fig.1  (a) Four-square mesh layout of the rectangular structure; (b) binary string(Chromosome: 0001000100100000 000100100100000).
material strength (MPa)
concrete
vertical steel reinforcement
35
400
Tab.1  Material properties
Fig.2  A layout with three groups of shear wall.
Fig.3  Equivalent model for reinforcement, and the stain and stress diagrams of the reinforced concrete under axial force and bending moment about the horizontal axis.
Fig.4  Interaction diagram and the flexural strength checking process.
Fig.5  Superposition process.
Fig.6  The performance of the CSS algorithm.(a) Determining the resultant electrical force affecting a CP;(b) the movement of a CP to the new position.
Fig.7  The flowchart of the CSS.
dead load, D (kPa) live load, L (kPa) wind load, W (kPa)
4.55 kPa 2.15 kPa 1.44 kPa
Tab.2  Loading values used
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 2.9121×10-15 0.8949 0.5630 0.7347 0 2.7724×106
Y-direction 5.8241×10-15 0.8229 0.5770 0.4551 0
Tab.3  The constraint values (Max=1) of objective function in the 4-variables mode using Charged System Search (CSS)
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 0 0.8749 0.5342 0.5214 0 2.2956×106
Y-direction 5.8241×10-15 0.8466 0.9713 0.2607 0
Tab.4  The constraint values (Max=1) of objective function in the 4-variables mode using Quantum Charged System Search (QCSS)
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 2.9121×10-15 0.8283 0.4846 0.4171 0 2.8228×106
Y-direction 5.8241×10-15 0.9564 0.8810 0.2744 0
Tab.5  The constraint values (Max=1) of objective function in the 32-variables mode using Charged System Search (CSS)
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 0.6557 0.5847 0.5305 0.1935 0 2.3791×106
Y-direction 0 0.2704 0.9103 0.7410 0
Tab.6  The constraint values (Max=1) of objective function in the 32-variables mode using Quantum Charged System Search (QCSS)
Fig.8  Result of 4-variable model using (a) CSS and (b) QCSS.
Fig.9  Result of 32-variable model using (a) CSS and (b) QCSS.
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 2.9121×10-15 0.5511 0.6716 0.2360 0 3.2339×106
Y-direction 5.8241×10-15 0.7816 0.5769 0.4551 0
Tab.7  The constraint values (Max=1) of objective function in the 4-variables mode (Void space) using Charged System Search (CSS)
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 0 0.7299 0.7042 0.2454 0 2.2956×106
Y-direction 5.8241×10-15 0.2216 0.9713 0.2607 0
Tab.8  The constraint values (Max=1) of objective function in the 4-variables mode (Void space) using Quantum Charged System Search (QCSS)
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 2.9121×10-15 0.7753 0.4576 0.3846 0 3.5119×106
Y-direction 0 0.8778 0.6007 0.3974 0
Tab.9  The constraint values (Max=1) of objective function in the 32-variables mode (Void space) using Charged System Search (CSS)
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 0.6557 0.6188 0.6000 0.1636 0 2.8134×106
Y-direction 5.8241×10-15 0.7177 0.7285 0.2737 0
Tab.10  The constraint values (Max=1) of objective function in the 32-variables mode (Void space) using Quantum Charged System Search (QCSS)
Fig.10  Result of 4-variable model considering the void space using (a) CSS and (b) QCSS.
Fig.11  Result of 32-variable model considering the void space using (a) CSS and (b) QCSS.
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 5.8241×10-15 0.3641 0.3574 0.1277 0 3.7227×106
Y-direction 0 0.9194 0.6620 0.4968 0
Tab.11  The constraint values (Max=1) of objective function in the 4-variables mode (Fixed shear wall) using Charged System Search (CSS)
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 2.9121×10-15 0.6065 0.3703 0.3792 0 2.7571×106
Y-direction 5.8241×10-15 0.2320 0.9712 0.2607 0
Tab.12  The constraint values (Max=1) of objective function in the 4-variables mode (Fixed shear wall) using Quantum Charged System Search (QCSS)
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 2.9121×10-15 0.8125 0.3064 0.3575 0 3.7288×106
Y-direction 0 0.3657 0.4790 0.9401 0
Tab.13  The constraint values (Max=1) of objective function in the 32-variables mode (Fixed shear Wall) using Charged System Search (CSS)
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 2.9121×10-15 0.5778 0.3528 0.3572 0 3.2612×106
Y-direction 0 0.9196 0.6621 0.4968 0
Tab.14  The constraint values (Max=1) of objective function in the 32-variables mode (Fixed shear Wall) using Quantum Charged System Search (QCSS)
Fig.12  Result of 4-variable model considering the predefined shear walls using (a) CSS and (b) QCSS.
Fig.13  Result of 32-variable model considering the predefined shear walls using (a) CSS and (b) QCSS.
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 2.9121×10-15 0.2417 0.4478 0.0736 0 3.5483×106
Y-direction 5.8241×10-15 0.3632 0.5394 0.9401 0
Tab.15  The constraint values (Max=1) of objective function in the 4-variables mode (Considering both Void Space and Fixed Shear Walls in layout) using Charged System Search (CSS)
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 2.9121×10-15 0.3646 0.4346 0.1406 0 3.2612×106
Y-direction 0 0.9196 0.6621 0.4968 0
Tab.16  The constraint values (Max=1) of objective function in the 4-variables mode (Considering both Void Space and Fixed Shear Walls in layout) using Quantum Charged System Search (QCSS)
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 0 0.6666 0.4140 0.1738 0 3.66816×106
Y-direction 5.8241×10-15 0.4794 0.5724 0.1264 0
Tab.17  The constraint values (Max=1) of objective function in the 32-variables mode (Considering both Void Space and Fixed Shear Walls in layout) using Charged System Search (CSS)
direction C D cmcs CDC Cv Cdrift C SWclosedarea penalty cost
X-direction 0 0.5142 0.6192 0.1738 0 3.09408×106
Y-direction 5.8241×10-15 0.5963 0.7285 0.1738 0
Tab.18  The constraint values (Max=1) of objective function in the 32-variables mode (Considering both Void Space and Fixed Shear Walls in layout) using Quantum Charged System Search (QCSS)
Fig.14  Result of 4-variable model considering the void space and predefined shear walls using (a) CSS and (b) QCSS.
Fig.15  Result of 32-variable model considering the void space and predefined shear walls using (a) CSS and (b) QCSS.
1 M H Günel, H E Ilgin. Tall Buildings: Structural Systems and Aerodynamic Form. Abingdon: Routledge, 2014
2 E L Wilson, J Hollings, H H. Dovey ETABS: Three Dimensional Analysis of Building Systems (extended Version). National Information Service for Earthquake Engineering/Computer. California: Applications, Earthquake Engineering Research Center, University of California, 1979
3 K Socha, M Dorigo. Ant colony optimization for continuous domains. European Journal of Operational Research, 2008, 185(3): 1155–1173
https://doi.org/10.1016/j.ejor.2006.06.046
4 R Eberhart, J Kennedy. A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Japan: IEEE, 1995
5 A Kaveh, S Talatahari. A novel heuristic optimization method: Charged system search. Acta Mechanica, 2010, 213(3–4): 267–289
https://doi.org/10.1007/s00707-009-0270-4
6 Z W Geem, J H Kim, G V. Loganathan A new heuristic optimization algorithm: Harmony search. Simulation, 2001, 76(2): 60–68
7 A Kaveh, S Talatahari. A hybrid CSS and PSO algorithm for optimal design of structures. Structural Engineering and Mechanics, 2012, 42(6): 783–797
https://doi.org/10.12989/sem.2012.42.6.783
8 O K Erol, I Eksin. A new optimization method: Big bang-big crunch. Advances in Engineering Software, 2006, 37(2): 106–111
https://doi.org/10.1016/j.advengsoft.2005.04.005
9 M Hayalioglu, S Degertekin. Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization. Computers & Structures, 2005, 83(21–22): 1849–1863
https://doi.org/10.1016/j.compstruc.2005.02.009
10 C M Chan. Optimal lateral stiffness design of tall buildings of mixed steel and concrete construction. Structural Design of Tall Buildings, 2001, 10(3): 155–177
https://doi.org/10.1002/tal.170
11 S O Degertekin, M S Hayalioglu. Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases. Structural and Multidisciplinary Optimization, 2010, 42(5): 755–768
https://doi.org/10.1007/s00158-010-0533-7
12 C M Chan, K M Wong. Structural topology and element sizing design optimisation of tall steel frameworks using a hybrid OC-GA method. Structural and Multidisciplinary Optimization, 2008, 35(5): 473–488
https://doi.org/10.1007/s00158-007-0151-1
13 Q Q Liang, Y M Xie, G P Steven. Optimal topology design of bracing systems for multistory steel frames. Journal of Structural Engineering, 2000, 126(7): 823–829
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(823)
14 M Liu. Progressive collapse design of seismic steel frames using structural optimization. Journal of Constructional Steel Research, 2011, 67(3): 322–332
https://doi.org/10.1016/j.jcsr.2010.10.009
15 S Shamshirband, A Mosavi, T Rabczuk. Particle swarm optimization model to predict scour depth around bridge pier. 2009 arXiv:1906.08863
16 S Talatahari, M Aalami, R Parsiavash. Risk-based arch dam optimization using hybrid charged system search. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems. Part A, Civil Engineering, 2018, 4(2): 04018008
https://doi.org/10.1061/AJRUA6.0000953
17 S Talatahari, M Aalami, R Parsiavash. Optimum design of double curvature arch dams using a quick hybrid charged system search algorithm. Iran University of Science & Technology, 2016, 6(2): 227–243
18 A Kaveh, A Behnam. Design optimization of reinforced concrete 3D structures considering frequency constraints via a charged system search. Scientia Iranica, 2013, 20(3): 387–396
19 C V Camp, S Pezeshk, H Hansson. Flexural design of reinforced concrete frames using a genetic algorithm. Journal of Structural Engineering, 2003, 129(1): 105–115
https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(105)
20 A Kaveh, P Zakian. Optimal seismic design of reinforced concrete shear wall-frame structures. KSCE Journal of Civil Engineering, 2014, 18(7): 2181–2190
https://doi.org/10.1007/s12205-014-0640-x
21 C H Peng, Y L Yang, F Bao, D Fink, D M Yan, P Wonka, N J Mitra. Computational network design from functional specifications. ACM Transactions on Graphics, 2016, 35(4): 1–12 (TOG)
https://doi.org/10.1145/2897824.2925935
22 K Terzidis. AutoPLAN: A stochastic generator of architectural plans from a building program. Massachusetts: Harvard Graduate School of Design Cambridge, 2007: 84–87
23 K Shekhawat. Algorithm for constructing an optimally connected rectangular floor plan. Frontiers of Architectural Research, 2014, 3(3): 324–330
https://doi.org/10.1016/j.foar.2013.12.003
24 M, Aminnia M. Hosseini The effects of placement and cross-section shape of shear walls in multi-story RC buildings with plan irregularity on their seismic behavior by using nonlinear time history analyses. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 2015, 9(10): 1327–1334
25 H Ghasemi, H S Park, T Rabczuk. A multi-material level set-based topology optimization of flexoelectric composites. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 47–62
https://doi.org/10.1016/j.cma.2017.12.005
26 H Ghasemi, H S Park, T Rabczuk. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258
https://doi.org/10.1016/j.cma.2016.09.029
27 H Ghasemi, H S Park, N Alajlan, T Rabczuk. A Computational framework for design and optimization of flexoelectric materials. International Journal of Computational Methods, 2020, 17(1): 1850097
https://doi.org/10.1142/S0219876218500974
28 C Nguyen, X Zhuang, L Chamoin, X Zhao, H Nguyen-Xuan, T Rabczuk. Three-dimensional topology optimization of auxetic metamaterial using isogeometric analysis and model order reduction. 2019, arXiv:1908.11449
29 S Nanthakumar, X Zhuang, H S Park, T Rabczuk. Topology optimization of flexoelectric structures. Journal of the Mechanics and Physics of Solids, 2017, 105: 217–234
https://doi.org/10.1016/j.jmps.2017.05.010
30 A Kaveh, S Talatahari. Charged system search for optimal design of frame structures. Applied Soft Computing, 2012, 12(1): 382– 393
https://doi.org/10.1016/j.asoc.2011.08.034
31 A Kaveh, S Talatahari. Optimal design of skeletal structures via the charged system search algorithm. Structural and Multidisciplinary Optimization, 2010, 41(6): 893–911
https://doi.org/10.1007/s00158-009-0462-5
32 Y Zhang, C Mueller. Shear wall layout optimization for conceptual design of tall buildings. Engineering Structures, 2017, 140: 225–240
https://doi.org/10.1016/j.engstruct.2017.02.059
33 W Dorn. Automatic design of optimal structures. Journal de Mécanique, 1964, 3: 25–52
34 K S Lee, Z W Geem. A new structural optimization method based on the harmony search algorithm. Computers & Structures, 2004, 82(9–10): 781–798
https://doi.org/10.1016/j.compstruc.2004.01.002
35 T Hagishita, M Ohsaki. Topology optimization of trusses by growing ground structure method. Structural and Multidisciplinary Optimization, 2009, 37(4): 377–393
https://doi.org/10.1007/s00158-008-0237-4
36 B S Taranath. Steel, Concrete, and Composite Design of Tall Buildings. New York: McGraw-Hill, 1998
37 A H Nilson, D Darwin, C W Dolan. Design of Concrete Structures. New York: McGraw-Hill, 2010
38 American Concrete Institute. Building Code Requirements for Structural Concrete (ACI 318-14): Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14): An ACI Report. American Concrete Institute, 2014
39 J Rodriguez, J D Aristizabal-Ochoa. Biaxial interaction diagrams for short RC columns of any cross section. Journal of Structural Engineering, 1999, 125(6): 672–683
https://doi.org/10.1061/(ASCE)0733-9445(1999)125:6(672)
40 A J Satheesh , B Jayalekshmi, K. Venkataramana Effect of in-plan eccentricity in vertically mass irregular RC framed buildings under seismic loads. Asian Journal of Civil Engineering, 2019, 20(5): 713–726
41 M E Kamara, L C Novak. Simplified Design of Reinforced Concrete Buildings. Skokie: Portland Cement Association, 2011
42 K A Zalka. Structural Analysis of Regular Multi-storey Buildings. London: CRC Press, 2012
43 B Stafford Smith, A Coull. Tall Building Structures: Analysis and Design. New York: Wiley-Interscience, 1991
44 , Bungale S. TaranathStructural Analysis and Design of Tall Buildings: Steel and Composite Construction. London: CRC press, 2016
45 J Sun, B Feng, W Xu. Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753). Portland, OR: IEEE, 2004
46 J Sun, W Xu, B Feng. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level. In: 2005 IEEE international Conference on Systems, Man and Cybernetics. Waikoloa, HI: IEEE, 2005
47 S M Mikki, A A Kishk. Quantum particle swarm optimization for electromagnetics. IEEE Transactions on Antennas and Propagation, 2006, 54(10): 2764–2775
https://doi.org/10.1109/TAP.2006.882165
48 B Luitel, G K Venayagamoorthy. Particle swarm optimization with quantum infusion for the design of digital filters. In: 2008 IEEE Swarm Intelligence Symposium. St. Louis, MO: IEEE, 2008
49 B S Taranath. Tall Building Design: Steel, Concrete, and Composite Systems. Boca Raton, FL: CRC Press, 2016
50 N Vu-Bac, T Lahmer, X Zhuang, T Nguyen-Thoi, T Rabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
51 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial neural network methods for the solution of second order boundary value problems. Computers. Materials & Continua, 2019, 59(1): 345–359
https://doi.org/10.32604/cmc.2019.06641
Related articles from Frontiers Journals
[1] Xiao YAN, Zizheng SUN, Shucai LI, Rentai LIU, Qingsong ZHANG, Yiming ZHANG. Quantitatively assessing the pre-grouting effect on the stability of tunnels excavated in fault zones with discontinuity layout optimization: A case study[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1393-1404.
[2] Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER. Modeling of shear walls using finite shear connector elements based on continuum plasticity[J]. Front. Struct. Civ. Eng., 2017, 11(2): 143-157.
[3] Patricia M. CLAYTON,Daniel M. DOWDEN,Chao-Hsien LI,Jeffrey W. BERMAN,Michel BRUNEAU,Laura N. LOWES,Keh-Chuan TSAI. Self-centering steel plate shear walls for improving seismic resilience[J]. Front. Struct. Civ. Eng., 2016, 10(3): 283-290.
[4] Kui XIAO,Qilin ZHANG,Bin JIA. Cyclic behavior of prefabricated reinforced concrete frame with infill slit shear walls[J]. Front. Struct. Civ. Eng., 2016, 10(1): 63-71.
[5] Zheng LI,Minjuan HE,Frank LAM,Minghao LI. Load-sharing mechanism in timber-steel hybrid shear wall systems[J]. Front. Struct. Civ. Eng., 2015, 9(2): 203-214.
[6] Wanlin CAO, Jianwei ZHANG, Jingna ZHANG, Min WANG, . Experimental study on seismic behavior of mid-rise RC shear wall with concealed truss[J]. Front. Struct. Civ. Eng., 2009, 3(4): 370-377.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed