Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2020, Vol. 14 Issue (3) : 623-631
Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics investigation
Mohammad SALAVATI(), Arvin MOJAHEDIN, Ali Hossein Nezhad SHIRAZI
Institute of Structural Mechanics, Bauhaus-Universität Weimar, Weimar D-99423, Germany
Download: PDF(4915 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

In this work we conducted classical molecular dynamics (MD) simulation to investigate the mechanical characteristics and failure mechanism of hexagonal boron-nitride (h-BN) nanosheets. Pristine and defective structure of h-BN nanosheets were considered under the uniaxial tensile loadings at various temperatures. The defective structure contains three types of the most common initial defects in engineering materials that are known as cracks, notches (with various length/size), and point vacancy defects (with a wide range of concentration). MD simulation results demonstrate a high load-bearing capacity of extremely defective (amorphized) h-BN nanosheets. Our results also reveal that the tensile strength decline by increasing the defect content and temperature as well. Our MD results provide a comprehensive and useful vision concerning the mechanical properties of h-BN nanosheets with/without defects, which is very critical for the designing of nanodevices exploiting the exceptional physics of h-BN.

Keywords hexagonal boron-nitride      mechanical properties      crack      notch      point defects      molecular dynamics     
Corresponding Author(s): Mohammad SALAVATI   
Just Accepted Date: 09 April 2020   Online First Date: 02 June 2020    Issue Date: 13 July 2020
 Cite this article:   
Mohammad SALAVATI,Arvin MOJAHEDIN,Ali Hossein Nezhad SHIRAZI. Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics investigation[J]. Front. Struct. Civ. Eng., 2020, 14(3): 623-631.
E-mail this article
E-mail Alert
Articles by authors
Ali Hossein Nezhad SHIRAZI
Fig.1  Lattice structure of monolayer h-BN. The unit cell is shown as parallelogram contains one nitrogen and one boron atoms.
Fig.2  Top and side views of atomistic model of amorphized h-BN with (a) and (b) 70%, (c) and (d) 10% defect concentrations made from 92800 atoms. The inset shows a detailed view focusing on a highly defective zone.
Fig.3  Stress-strain response of the pristine h-BN nanosheet under the uniaxial tension at temperatures of 200, 300, 400, 500, 700, and 900 K.
tempreture (K) 200 300 400 600 900
E (GPa) 635.56 627.52 619.61 605.40 586.50
Tab.1  Young’s Modulus (E) of the pristine nanosheet at the 200, 300, 400, 500,700, and 900 K
Fig.4  Failure mechanisms and crack propagation of h-BN nanosheet with length of L/9 at 300 K under tensile loading in various strain values. (a)ε=0.061; (b)ε=0.121; (c)ε=0.152; (d)ε=0.165; (e)ε=0.177; (f)ε=0.179.
Fig.5  (a) The tensile strength of the nanosheet in the presence of crack with different lengths which are studied at a range of temperatures from 200 to 900 K; (b) engineering strain at maximum tensile strength of the C3N nanosheet with various cracks at different temperatures.
Fig.6  Failure mechanisms and notch propagation of h-BN nanosheet with length of L/9 at 300 K in various strain values under the uniaxial tensile loading. (a)ε=0.061; (b)ε=0.121; (c)ε=0.152; (d)ε=0.165; (e)ε=0.177; (f)ε=0.179.
Fig.7  (a) The ultimate tensile strength of the nanosheet in presence of the notch defect with different diameters; (b) Engineering strain at maximum tensile strength in presence of notch defect with different diameters, at various temperatures of 200, 300, 500, 700, and 900 K.
Fig.8  h-BN nanosheet elastic modulus (E) in presence of (a) crack and (b) notch defects. Elastic modulus values normalized by the pristine elastic modulus at 200 K (EP-200 K = 635.56 GPa)
Fig.9  Stress-strain response of the pristine h-BN nanosheet under the uniaxial tension at different Stone-Wales defects concentrations (10%, 40%, and 70%) in room temperature
Fig.10  Normalized (a) Ultimate tensile stress (UTstress); (b) ultimate tensile strain (UTstrain); (c) elastic modulus (E) by correspond pristine values versus to the Stone-Wales defects concentration content (%).
1 A K Geim, K S Novoselov. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
2 K S Novoselov, D Jiang, F Schedin, T J Booth, V V Khotkevich, S V Morozov, A K Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451–10453
3 S Z Butler, S M Hollen, L Cao, Y Cui, J A Gupta, H R Gutiérrez, T F Heinz, S S Hong, J Huang, A F Ismach, E Johnston-Halperin, M Kuno, V V Plashnitsa, R D Robinson, R S Ruoff, S Salahuddin, J Shan, L Shi, M G Spencer, M Terrones, W Windl, J E Goldberger. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7(4): 2898–2926
4 B Radisavljevic, A Radenovic, J Brivio, V Giacometti, A Kis. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150
5 R W Lynch, H G Drickamer. Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride. Journal of Chemical Physics, 1966, 44(1): 181–184
6 K Watanabe, T Taniguchi, H Kanda. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials, 2004, 3(6): 404–409
7 D Golberg, Y Bando, Y Huang, T Terao, M Mitome, C Tang, C Zhi. Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4(6): 2979–2993
8 B Mortazavi, L F C Pereira, J W Jiang, T Rabczuk. Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Scientific Reports, 2015, 5(1): 13228
9 B Mortazavi, G Cuniberti. Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Advances, 2014, 4(37): 19137–19143
10 L H Li, J Cervenka, K Watanabe, T Taniguchi, Y Chen. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano, 2014, 8(2): 1457–1462
11 H Zhou, J Zhu, Z Liu, Z Yan, X Fan, J Lin, G Wang, Q Yan, T Yu, P M Ajayan, J M Tour. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Research, 2014, 7(8): 1232–1240
12 R Kumar, G Rajasekaran, A Parashar. Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: A molecular dynamics study. Nanotechnology, 2016, 27(8): 085706
13 J Wang, F Ma, M Sun. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Advances, 2017, 7(27): 16801–16822
14 J Yin, J Li, Y Hang, J Yu, G Tai, X Li, Z Zhang, W Guo. Boron nitride nanostructures: Fabrication, functionalization and applications. Small, 2016, 12(22): 2942–2968
15 Z Liu, L Ma, G Shi, W Zhou, Y Gong, S Lei, X Yang, J Zhang, J Yu, K P Hackenberg, A Babakhani, J C Idrobo, R Vajtai, J Lou, P M Ajayan. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology, 2013, 8(2): 119–124
16 A Rubio, J L Corkill, M L Cohen. Theory of graphitic boron nitride nanotubes. Physical Review B: Condensed Matter, 1994, 49(7): 5081–5084
17 A Cresti, N Nemec, B Biel, G Niebler, F Triozon, G Cuniberti, S Roche. Charge transport in disordered graphene-based low dimensional materials. Nano Research, 2008, 1(5): 361–394
18 F Banhart, J Kotakoski, A V Krasheninnikov. Structural defects in graphene. ACS Nano, 2011, 5(1): 26–41
19 D W Boukhvalov, M I Katsnelson. Chemical functionalization of graphene with defects. Nano Letters, 2008, 8(12): 4373–4379
20 A Hashimoto, K Suenaga, A Gloter, K Urita, S Iijima. Direct evidence for atomic defects in graphene layers. Nature, 2004, 430(7002): 870–873
21 J C Meyer, C Kisielowski, R Erni, M D Rossell, M F Crommie, A Zettl. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters, 2008, 8(11): 3582–3586
22 J Kotakoski, A V Krasheninnikov, K Nordlund. Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: Atomistic simulations. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(24): 245420
23 J Ma, D Alfè , A Michaelides, E Wang. Stone-Wales defects in graphene and other planar sp2-bonded materials. Physical Review B: Condensed Matter and Materials Physics, 2009, 80(3): 033407
24 B Mortazavi, G Cuniberti. Atomistic modeling of mechanical properties of polycrystalline graphene. Nanotechnology, 2014, 25(21): 215704
25 B Mortazavi, M Pötschke, G Cuniberti. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets. Nanoscale, 2014, 6(6): 3344–3352
26 C Lee, X Wei, J W Kysar, J. HoneMeasurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321 (5887): 385–388
27 R Bourrellier, S Meuret, A Tararan, O Stéphan, M Kociak, L H G Tizei, A. Zobelli Bright UV Single photon emission at point defects in h-BN. Nano Letters, 2016, 16(7): 4317–4321
28 M Salavati, H Ghasemi, T Rabczuk. Electromechanical properties of Boron Nitride Nanotube: Atomistic bond potential and equivalent mechanical energy approach. Computational Materials Science, 2018, 149: 460–465
29 M Salavati, T Rabczuk. Application of highly stretchable and conductive two-dimensional 1T VS2 and VSe2 as anode materials for Li-, Na- and Ca-ion storage. Computational Materials Science, 2019, 160: 360–367
30 M Salavati. Electronic and mechanical responses of two-dimensional HfS2, HfSe2, ZrS2, and ZrSe2 from first-principles. Frontiers of Structural and Civil Engineering, 2019, 13(2): 486–494
31 A Katzir, J T Suss, A Zunger, A Halperin. Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements. Physical Review B, 1975, 11(6): 2370–2377
32 I Jiménez, A F Jankowski, L J Terminello, D G J Sutherland, J A Carlisle, G L Doll, W M Tong, D K Shuh, F J Himpsel. Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride. Physical Review B: Condensed Matter, 1997, 55(18): 12025–12037
33 S I Hirano, T Yogo, S Asada, S Naka. Synthesis of amorphous boron nitride by pressure pyrolysis of borazine. Journal of the American Ceramic Society, 1989, 72(1): 66–70
34 T Taniguchi, K Kimoto, M Tansho, S Horiuchi, S Yamaoka. Phase transformation of amorphous boron nitride under high pressure. Chemistry of Materials, 2003, 15(14): 2744–2751
35 B Mortazavi, S Ahzi. Thermal conductivity and tensile response of defective graphene: A molecular dynamics study. Carbon N. Y., 2013, 63: 460–470
36 N Ding, X Chen, C M L Wu. Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets. Scientific Reports, 2016, 6(1): 31499
37 S Güryel, B Hajgató, Y Dauphin, J M Blairon, H Edouard Miltner, F De Proft, P Geerlings, G Van Lier. Effect of structural defects and chemical functionalisation on the intrinsic mechanical properties of graphene. Physical Chemistry Chemical Physics, 2013, 15(2): 659–665
38 T Han, Y Luo, C Wang. Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. Journal of Physics D, Applied Physics, 2014, 47(2): 025303
39 R Abadi, R P Uma, M Izadifar, T Rabczuk. Investigation of crack propagation and existing notch on the mechanical response of polycrystalline hexagonal boron-nitride nanosheets. Computational Materials Science, 2017, 131: 86–99
40 S Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1–19
41 K Matsunaga, C Fisher, H Matsubara. Tersoff potential parameters for simulating cubic boron carbonitrides. Japanese Journal of Applied Physics, 2000, 39: 48–51
42 G J Martyna, M L Klein, M Tuckerman. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. The Journal of chemical physics, 1992, 97(4): 2635–3643
43 A Cheng, K M Merz. Application of the Nosé-Hoover chain algorithm to the study of protein dynamics. Journal of Physical Chemistry, 1996, 100(5): 1927–1937
44 S Nosé. A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 1984, 81(1): 511–519
45 W G Hoover. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985, 31(3): 1695–1697
46 B Mortazavi, G Cuniberti, T Rabczuk. Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study. Computational Materials Science, 2015, 99: 285–289
47 B Mortazavi, M Makaremi, M Shahrokhi, M Raeisi, C V Singh, T Rabczuk, L F C Pereira. Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties. Nanoscale, 2018, 10(8): 3759–3768
48 B Mortazavi, M Makaremi, M Shahrokhi, Z Fan, T Rabczuk. N-graphdiyne two-dimensional nanomaterials: Semiconductors with low thermal conductivity and high stretchability. Carbon N. Y., 2018, 137: 57–67
49 B Mortazavi, M E Madjet, M Shahrokhi, S Ahzi, X Zhuang, T Rabczuk. Nanoporous graphene: A 2D semiconductor with anisotropic mechanical, optical and thermal conduction properties. Carbon N. Y., 2019, 147: 377–384
50 B Mortazavi, O Benzerara, H Meyer, J Bardon, S Ahzi. Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon N. Y., 2013, 60: 356–365
51 B Mortazavi, T Rabczuk. Multiscale modeling of heat conduction in graphene laminates. Carbon N. Y., 2015, 85: 1–7
52 B Mortazavi, M Shahrokhi, X Zhuang, T Rabczuk. Boron-graphdiyne: A superstretchable semiconductor with low thermal conductivity and ultrahigh capacity for Li, Na and Ca ion storage. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(23): 11022–11036
53 B Mortazavi, Y Rémond, S Ahzi, V Toniazzo. Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations. Computational Materials Science, 2012, 53(1): 298–302
54 A K Subramaniyan, C T Sun. Continuum interpretation of virial stress in molecular simulations. International Journal of Solids and Structures, 2008, 45(14–15): 4340–4346
55 A Stukowski. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012
56 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59(2): 433–456
57 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59(1): 345–359
58 T Rabczuk, H Ren, X Zhuang. A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Computers, Materials & Continua, 2019, 59(1): 31–55
59 Y P Varshni. Temperature dependence of the elastic constants. Physical Review B, 1970, 2(10): 3952–3958
60 J M Ziman. Electrons and Phonons: The Theory of Transport Phenomena in Solids. Clarendon Press, 2001
61 J M Ziman. Electrons and Phonons. Oxford: Oxford University Press, 2001
62 F Liu, P Ming, J Li. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(6): 064120
63 A H N Shirazi. Molecular dynamics investigation of mechanical properties of single-layer phagraphene. Frontiers of Structural and Civil Engineering, 2019, 13(2): 495–503
64 A H N Shirazi, R Abadi, M Izadifar, N Alajlan, T Rabczuk. Mechanical responses of pristine and defective C3N nanosheets studied by molecular dynamics simulations. Computational Materials Science, 2018, 147: 316–321
65 B Mortazavi. Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon N. Y., 2017, 118: 25–34
66 B Mortazavi, Z Fan, L F C Pereira, A Harju, T Rabczuk. Amorphized graphene: A stiff material with low thermal conductivity. Carbon N. Y., 2016, 103: 318–326
Related articles from Frontiers Journals
[1] Mahgoub M. SALIH, Adelaja I. OSOFERO, Mohammed S. IMBABI. Critical review of recent development in fiber reinforced adobe bricks for sustainable construction[J]. Front. Struct. Civ. Eng., 2020, 14(4): 839-854.
[2] Zhitao LV, Caichu XIA, Yuesong WANG, Ziliang LIN. Frost heave and freezing processes of saturated rock with an open crack under different freezing conditions[J]. Front. Struct. Civ. Eng., 2020, 14(4): 947-960.
[3] Fucheng GUO, Jiupeng ZHANG, Jianzhong PEI, Weisi MA, Zhuang HU, Yongsheng GUAN. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation[J]. Front. Struct. Civ. Eng., 2020, 14(2): 435-445.
[4] Jaroon RUNGAMORNRAT, Bounsana CHANSAVANG, Weeraporn PHONGTINNABOOT, Chung Nguyen VAN. Investigation of Generalized SIFs of cracks in 3D piezoelectric media under various crack-face conditions[J]. Front. Struct. Civ. Eng., 2020, 14(2): 280-298.
[5] Baoyun ZHAO, Yang LIU, Dongyan LIU, Wei HUANG, Xiaoping WANG, Guibao YU, Shu LIU. Research on the influence of contact surface constraint on mechanical properties of rock-concrete composite specimens under compressive loads[J]. Front. Struct. Civ. Eng., 2020, 14(2): 322-330.
[6] Dongliang HU, Jianzhong PEI, Rui LI, Jiupeng ZHANG, Yanshun JIA, Zepeng FAN. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation[J]. Front. Struct. Civ. Eng., 2020, 14(1): 109-122.
[7] Weihua FANG, Jiangfei WU, Tiantang YU, Thanh-Tung NGUYEN, Tinh Quoc BUI. Simulation of cohesive crack growth by a variable-node XFEM[J]. Front. Struct. Civ. Eng., 2020, 14(1): 215-228.
[8] Aydin SHISHEGARAN, Mohammad Reza GHASEMI, Hesam VARAEE. Performance of a novel bent-up bars system not interacting with concrete[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1301-1315.
[9] Shaochun WANG, Xi JIANG, Yun BAI. The influence of hand hole on the ultimate strength and crack pattern of shield tunnel segment joints by scaled model test[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1200-1213.
[10] Yijie HUANG, Xujia HE, Qing WANG, Jianzhuang XIAO. Deformation field and crack analyses of concrete using digital image correlation method[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1183-1199.
[11] Xudong SHAO, Lu DENG, Junhui CAO. Innovative steel-UHPC composite bridge girders for long-span bridges[J]. Front. Struct. Civ. Eng., 2019, 13(4): 981-989.
[12] Yundong ZHOU, Fei ZHANG, Jingquan Wang, Yufeng GAO, Guangyu DAI. Seismic stability of earth slopes with tension crack[J]. Front. Struct. Civ. Eng., 2019, 13(4): 950-964.
[13] Kunamineni VIJAY, Meena MURMU. Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete[J]. Front. Struct. Civ. Eng., 2019, 13(3): 515-525.
[14] Ali Hossein Nezhad SHIRAZI. Molecular dynamics investigation of mechanical properties of single-layer phagraphene[J]. Front. Struct. Civ. Eng., 2019, 13(2): 495-503.
[15] Hsien-Yang YEH, Bin YANG. A concise review about fracture assessments of brittle solids with V-notches[J]. Front. Struct. Civ. Eng., 2019, 13(2): 478-485.
Full text