Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2017, Vol. 11 Issue (4) : 436-445     https://doi.org/10.1007/s11709-017-0438-2
RESEARCH ARTICLE |
The effect of SiO2 nanoparticles derived from hydrothermal solutions on the performance of portland cement based materials
Ismael FLORES-VIVIAN1,2, Rani G.K PRADOTO1, Mohamadreza MOINI1, Marina KOZHUKHOVA1,3, Vadim POTAPOV4, Konstantin SOBOLEV1,3()
1. Department of Civil Engineering and Mechanics, Advanced and Nano Cement-Based Materials Laboratory, University of Wisconsin-Milwaukee, Milwaukee 53211, USA
2. Universidad Autónoma de Nuevo León, Av. Universidad s/n, Cd. Universitaria, San Nicolás de los Garza, 66455 Nuevo León, México
3. The Belgorod State Technological University named after V.G. Shoukhov, Belgorod, Russia
4. Geotechnological Research Center, Far East Branch of Russian Academy of Science, Petropavlovsk-Kamchatsky 683002, Russia
Download: PDF(2675 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The nanoparticles of SiO2 were used in cement systems to modify the rheological behavior, to enhance the reactivity of supplementary cementitious materials, and also to improve the strength and durability. In this research, low-cost nano-SiO2 particles from natural hydrothermal solutions obtained by membrane ultrafiltration and, optionally, by cryochemical vacuum sublimation drying, were evaluated in portland cement based systems. ??The SiO2-rich solutions were obtained from the wells of Mutnovsky geothermal power station (Far East of Russia). The constant nano-SiO2 dosage of 0.25% (as a solid material by weight of cementitious materials) was used to compare the cement systems with different nanoparticles against a reference mortar and a commercially available nano-SiO2. Nanoparticles were characterized by X-Ray Diffraction (XRD), BET Surface Area, Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FTIR) spectroscopy techniques. It was demonstrated that the addition of polycarboxylate ether superplasticizer and the dispersion treatment using an ultrasound processor can be used to facilitate the distribution of nano-SiO2 particles in the mixing water. The effect of nano-SiO2 particles in portland cement mortars was investigated by evaluating the flow, heat of hydration and compressive strength development. It was demonstrated that the use of nano-SiO2 particles can reduce the segregation and improve strength properties.

Keywords ultrafiltration      cryochemical vacuum sublimation drying      nanoparticles      portland cement      heat of hydration      surface area      compressive strength     
Corresponding Authors: Konstantin SOBOLEV   
Online First Date: 29 August 2017    Issue Date: 10 November 2017
 Cite this article:   
Ismael FLORES-VIVIAN,Rani G.K PRADOTO,Mohamadreza MOINI, et al. The effect of SiO2 nanoparticles derived from hydrothermal solutions on the performance of portland cement based materials[J]. Front. Struct. Civ. Eng., 2017, 11(4): 436-445.
 URL:  
http://journal.hep.com.cn/fsce/EN/10.1007/s11709-017-0438-2
http://journal.hep.com.cn/fsce/EN/Y2017/V11/I4/436
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ismael FLORES-VIVIAN
Rani G.K PRADOTO
Mohamadreza MOINI
Marina KOZHUKHOVA
Vadim POTAPOV
Konstantin SOBOLEV
Fig.1  The scale ranges related to concrete
Fig.2  The process used by a geothermal power plant [17]
Component+К+Li+Са2+Мg2+Fex+Al3+Сl SO42−HCO3CO32−H3BO3SiO2
Concentration, mg/L28248.11.52.84.7<0.1<0.1251.8220.945.261.891.8780
Tab.1  The composition of the hydrothermal solutions [18]
MaterialSolid concentration, %BET surface area, m2/g
ReferenceCB85261
SolMB35352
DryTB10043
N2100228
Tab.2  Characterization of silica nanoparticles
Fig.3  The X-ray diffractogram (left) and scanning electron microscope image (right) of the N2 silica powder
Chemical
composition
ASTM C150
limit, %
Test
result, %
Physical
properties
ASTM C150
limit
Test
result
SiO2-19.8Density, g/cm3-3.2
Al2O3-4.9Time of setting, minutes
Fe2O3-2.8Initial45 min165
CaO-63.2Final375 max257
MgO6.0 max2.3Compressive strength, MPa
SO33.0 max2.91 day-12.1
Ignition loss3.0 max2.83 days12.021.7
Na2O-0.27 days19.028.3
K2O-0.528 days28.036.5
CO2-1.3
C3S54.7
C2S-15.5
C3A-8.4
C4AF-8.4
C4AF+2(C3A)-25.1
C3S+4.75(C3A)-94.5
Na2Oeq0.6 max0.57
Tab.3  Chemical composition and physical properties of portland cement
Fig.4  The FTIR spectroscopy?of silica nanoparticles (left) and types of silanol groups and siloxane bridges on the surface of amorphous silica and internal OH-Groups (right) [21].
Mix IDFlowSetting time , minMax heat flowHydration Energy, J/g
InitialFinalC3SC3A
%Heat, mW/gTime,
hours
Heat, mW/gTime, hours24 hTotal
Ref951024083.9010.53.4313.7126170
CB8791324203.9010.73.3314.4130170
MB831023963.7710.84.1412.9132175
TB931504203.6611.33.3614.8126166
N2711323844.1210.33.7513.8142178
Tab.4  The effect of nano-SiO2 on hydration of mortars
Fig.5  The effect of SiO2 nanoparticles on the heat flow of mortars
Fig.6  The shift of C3S and C3A peaks due to the addition of nanosilica (left) and hydration energy of investigated systems (right)
Fig.7  Determination of setting time of nano-SiO2 based mortars
Fig.8  The compressive strength of mortars with nano-SiO2 particles
Fig.9  The correlation of compressive and splitting tensile strength for mortars with nano-SiO2
Mix IDCompressive strength, MPa,
at the age of, days
Splitting strength, MPa,
at the age of, days
13728901372890
Ref44688092943.15.35.76.16.2
CB848708696973.15.45.86.16.3
MB467288971083.85.66.06.36.6
TB477681881023.25.45.96.16.4
N2507482881014.25.86.26.46.7
Tab.5  Compressive and Splitting Tensile Strength of Mortars with nano-SiO2
1 Björnström J, Panas I. Antagonistic effect of superplasticizer and colloidal nano-silica in the hydration of alite and belite pastes. Journal of Materials Science, 2007, 11(42): 3901–3907
https://doi.org/10.1007/s10853-006-0467-z
2 Collepardi M, Ogoumah J, Skarp U, Troli R. Influence of Amorphous Colloidal Silica on the Properties of Self-Compacting Concretes. In: Proceedings of the International Conference, Challenges in Concrete Construction- Innovations and Developments  in  Concrete  Materials  and  Construction, Dundee, UK, 2002.
3 Ye Q, Zhang Z, Kong D, Chen R. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction & Building Materials, 2007, 21(3): 539–545
https://doi.org/10.1016/j.conbuildmat.2005.09.001
4 Flores-Vivian I, Sobolev K, Torres-Martinez L, Cuellar E, Valdez P, Zarazua E. Performance of Cement Systems with Nano- SiO2 Particles Produced Using Sol-gel Method. Transportation Research Record, 2010, 1: 10–14
https://doi.org/10.3141/2141-03
5 SobolevK. Modern developments related to nanotechnology and nanoengineering of concrete.Frontiers of Structural and Civil Engineering, 2016, 10(2): 131–141
6 PotapovV, ShitikovE, TrutnevN, GorbachV, PortnyaginN. Influence of Silica Nanoparticles on the Strength Characteristics of Cement Samples.Glass Physics and Chemistry, 2001, 1(37): 98–105
7 MoiniM, Flores-VivianI, AmirjanovA, SobolevK. The optimization of aggregate blends for sustainable low cement concrete.Construction &Building Materials, 2015, 93: 627–634
https://doi.org/10.1016/j.conbuildmat.2015.06.019
8 Langan B, Weng K, Ward M. Effect of silica fume and fly ash on heat of hydration of portland cement. Cement and Concrete Research, 2002, 32(7): 1045–1051
https://doi.org/10.1016/S0008-8846(02)00742-1
9 Flores-Vivian I, Pradoto R, Moini M, Sobolev K. The use of nanoparticles to improve the performance of concrete. In: Nano Conference, Brno, Czech Republic, EU, 2013
10 Björnström J, Martinelli A, Matic A, Börjesson L, Panas I. Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chemical Physics Letters, 2004, 392(1–3): 242–248
https://doi.org/10.1016/j.cplett.2004.05.071
11 Gaitero J J, Campillo I, Guerrero A. Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cement and Concrete Research, 2008, 38(8–9): 1112–1118
https://doi.org/10.1016/j.cemconres.2008.03.021
12 Jansson I, Skarp U, Bigley C. The value of colloidal silica for enhanced durability in high fluidity cement based mixes. In: the 5 International RILEM symposium on self-compacting concrete, 2007
13 Green B. Development of a high-density cementitious rock-matching grout using nano-particles. In: Proceedings of ACI Session on “Nanotechnology of Concrete: Recent Developments and Future Perspectives”, 2008
14 GawellK. Can Geothermal Energy Offset Global Warming? Renewable Energy News & Information, 2008
15 SobolevK. Nanotechnology and Nanoengineering of Construction Materials.In: Nanotechnology in Construction, Proceedings of NICOM5, 2015, 3–13
16 KagelA. The State of Geothermal Technology Part II: Surface Technology.Geothermal Energy Association, 2008
17 Yokogawa Corporation of America.Yokogawa in the Power Industry,Bulletin 53T01A01-01E, 2005
18 KutepovA, PotapovV. Movement and mass exchange of liquid drop in spinned flow of geothermal medium.Tear. Osnovy Khim. Tekh., 2000, 34(2)
19 Brazhnikov S, Generalov M, Taitnev N. Vacuum Sublimation Technique for Preparing Ultradispersed Powders of Inorganic Salts. Khim. Mashinoslr. (Moscow), 2004, 12: 12–15
20 ASTM C778. American Society for Testing and Materials. Standard specification of standard sand, 2006, 372–374
21 Zhuravlev L. The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2000, 173(1): 1–38
https://doi.org/10.1016/S0927-7757(00)00556-2
22 Mindess S, Young J F, Darwin D. Concrete, 2nd ed., Upper Saddle River, NJ: Prentice Hall, 2003
23 ASTM C1679 – 09. American Society for Testing and Materials. Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry, 2009
24 Wang K, Ge Z, Grove J, Ruiz J M, Rasmussen R, Ferragut T. Developing a Simple and Rapid Test for Monitoring the Heat Evolution of Concrete Mixtures for Both Laboratory and Field Applications. Center for Transportation Research and Education, Iowa State University, 2007
25 Muzenski S, Flores-Vivian I, Sobolev K. Hydrophobic engineered cementitious composites for highway applications. Cement and Concrete Composites, 2015, 57: 68–74
https://doi.org/10.1016/j.cemconcomp.2014.12.009
26 ASTM C1437-07. American Society for Testing and Materials. Test Method for Flow of Hydraulic Cement Mortar, 2007, 611–612
27 ASTM C109-07. American Society for Testing and Materials. Compressive Strength of Hydraulic Cement Mortars (using 2-in or 50-mm Cube Specimens), 2007, 64–68
28 IS 5816:1999. Splitting tensile strength of concrete- Method of Test, Bureau of Indian standards, 1999
29 Quercia G, Spiesz P, Husken G, Brouwers J. Effects of amorphous nano-silica additions on mechanical durability performance of SCC mixtures. In: International Congress on Durability of Concrete, Trondheim, Norway, 2012
30 Sobolev K, Lin Z, Flores-Vivian I, Pradoto R. Nano-Engineered Cements with Enhanced Mechanical Performance. Journal of the American Ceramic Society, 2016, 99(2): 564–572
https://doi.org/10.1111/jace.13819
Related articles from Frontiers Journals
[1] Lapyote PRASITTISOPIN, Issara SEREEWATTHANAWUT. Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer[J]. Front. Struct. Civ. Eng., 2018, 12(1): 16-25.
[2] Faezehossadat KHADEMI,Mahmoud AKBARI,Sayed Mohammadmehdi JAMAL,Mehdi NIKOO. Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete[J]. Front. Struct. Civ. Eng., 2017, 11(1): 90-99.
[3] L. P. SINGH,A. GOEL,S. K. BHATTACHARYYA,G. MISHRA. Quantification of hydration products in cementitious materials incorporating silica nanoparticles[J]. Front. Struct. Civ. Eng., 2016, 10(2): 162-167.
[4] Rahul DUBEY, Pardeep KUMAR. An experimental study for optimization of high range water reducing superplasticizer in self compacting concrete[J]. Front Struc Civil Eng, 2013, 7(1): 62-71.
[5] A D POFALE, S P WANJARI. Study of bond strength between various grade of Ordinary Portland Cement (OPC) and Portland Pozzolane Cement (PPC) mixes and different diameter of TMT bars by using pullout test[J]. Front Struc Civil Eng, 2013, 7(1): 39-45.
[6] XU Riqing, GUO Yin, LIU Zengyong. Mechanical properties of stabilized artificial organic soil[J]. Front. Struct. Civ. Eng., 2008, 2(2): 161-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed