Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2010, Vol. 4 Issue (1) : 78-91     https://doi.org/10.1007/s11709-010-0011-8
Research articles
Hypoplastic constitutive modeling of wetting deformation of weathered rockfill materials
Erich BAUER1,Zhongzhi FU2,Sihong LIU3,
1.Institute of Applied Mechanics, Graz University of Technology, Graz, Austria; 2.Institute of Applied Mechanics, Graz University of Technology, Graz, Austria;Institute of Hydraulic Structures, Hohai University, Nanjing 210098, China; 3.Institute of Hydraulic Structures, Hohai University, Nanjing 210098, China;
Download: PDF(791 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The wetting deformation of weathered rockfill materials has been attracting growing attention from both engineers and scientists. The importance of realistic predictions of wetting deformations for high earth and rockfill dams is a strong motivation to establish a suitable constitutive model. Recently, the hypoplastic constitutive model by Gudehus and Bauer was extended by introducing solid hardness depending on the state of weathering. The extended model takes into account the influence of the current density, the effective stress state, the rate of deformation, and the time dependent process of degradation of the solid hardness. In the present paper, the performance of this model is evaluated by comparing numerical simulations with experiments obtained from a water sensitive rockfill material. In particular, triaxial compression paths and creep deformation under deviatoric stress states are considered. Finally, the constitutive model proposed is used to study the influence of a degradation of the solid hardness on the long term behavior of a hypothetical fill dam.
Keywords rockfill dams      weathered granular materials      hypoplasticity      solid hardness      creep      stress relaxation      
Issue Date: 05 March 2010
 Cite this article:   
Erich BAUER,Sihong LIU,Zhongzhi FU. Hypoplastic constitutive modeling of wetting deformation of weathered rockfill materials[J]. Front. Struct. Civ. Eng., 2010, 4(1): 78-91.
 URL:  
http://journal.hep.com.cn/fsce/EN/10.1007/s11709-010-0011-8
http://journal.hep.com.cn/fsce/EN/Y2010/V4/I1/78
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Erich BAUER
Sihong LIU
Zhongzhi FU
Nobari E S, Duncan J M. Movements in dams due toreservoir filling. In: Proceedings of theASCE Specialty conference on Performance of Earth and Earth-supportedStructure, Lafayette. New York: ASCE, 1973, 797–815
Brauns J, Kast K, Blinde A. Compaction effects on the mechanical and saturation behaviorof disintegrated rockfill. In: Proceedingsof International Conference on Compaction. 1980, 1: 107–112
Alonso E, Cardoso R. Behavior of materials forearth and rockfill dams: perspective from unsaturated soil mechanics. In: Bauer E, Semprich S, Zenz G, eds. Proceedings of the 2nd InternationalConference on Long Term Behavior of Dams, Graz. 2009, 1–38
Rzadkowski B, Zurek J. Influence de l'Eau sur laDeformabilities des Roches Broyees et sur le Tassement des Barragesen Enrochement. In: Proceedings of theXth Congress on Large Dams, Montreal. 1970, 1: 857–867
Alonso E, Oldecop L A. Fundamentals of rockfillcollapse. In: RahardjoH, Toll D G, Leong E C, eds. Proceedings ofthe 1st Asian Conference on Unsaturated Soils, Singapore. Rotterdam: Balkema, 2000, 3–13
Oldecop L A, Alonso E. Testing rockfill under relativehumidity control. Geotechnical TestingJournal, 2004, 27(3): 1–10
Kast K, Blinde A, Brauns J. Verdichtungs-, Verformungs- und Saettigungsverhaltenvon Schuettungen in Abhaengigkeit von der geologischen Gesteinsentfestigung. In: Ingenieurgeologische Probleme im Grenzbereichzwischen Locker- und Festgesteinen. Berlin: Springer-Verlag, 1985
Oldecop L A, Alonso E. Theoretical investigationof the time-dependent €behavior of rockfill. Geotechnique, 2007, 57(3): 289–301

doi: 10.1680/geot.2007.57.3.289
Tedd P, Charies J A, Holton I R, Robertshaw A C. Deformation of embankment dams due to change in reservoir level. In: Proceedings of the 13th International Conferenceon Soil Mechanics and Foundation Engineering, New Delhi, India. 1994, 951–954
Yin Zongze, Zhao Hang. Deformation analysis of earthdam during reservoir filling. Chinese Journalof Geotechnical Engineering, 1990, 12(2): 1–8 (in Chinese)
Chen Q, Zhang L M. Three dimensional analysisof water infiltration into the Gouhou rockfill dam using saturated-unsaturatedseepage theory. Canadian Geotechnical Journal, 2006, 43(5): 449–461

doi: 10.1139/T06-011
Boncompain B, Pare J J, Levay J. Crest sinkholes related to the collapse of loose materialupon wetting. In: Proceedings of the 11thInternational Conference on Soil Mechanics and Foundation Engineering,San Francisco. 1985, 4: 1797–1801
Nobari E S, Duncan J M. Effect of Reservoir Fillingon Stresses and Movements in Earth and Rockfill Dams. Berkeley: University of California, 1972
Bao Huafu, Qu Zhijiong. The study of wetting propertiesfor coarse materials. Journal of ChengduUniversity of Science and Technology, 1989, 43(1): 23–30 (in Chinese)
Bauer E, Zhu Y. Constitutive modeling ofthe influence of pressure, density and moisture content on the mechanicalbehavior of rockfill materials. In: Wieland M, Rena Q, Tan John S Y, eds. Proceedings of the 4th International Conference on Dam Engineering,Nanjing. Rotterdam: Balkema, 2004, 139–146
Gudehus G. Avisco-hypoplastic constitutive relation. Soils and Foundation, 2004, 44(4): 11–25
Bauer E, Tantono S F, Zhu Y, Sihong L, Kast K. Modeling rheological propertiesof materials for rockfill dams. In: Zhu Y, Liu Y S, Qiang S, Chiu A, eds. Proceedings of 1st International Conference on Long Time Effectsand Seepage Behavior of Dams, Nanjing. Nanjing: Hoahai University Press, 2008, 73–80
Fu Z, Bauer E. Hypoplastic constitutivemodeling of the long term behavior and wetting deformation of weatheredgranular materials. In: Bauer E, Semprich S, ZenzG, eds. Proceedings of the 2nd International Conference on Long Term Behaviorof Dams, Graz. 2009, 437–478
Bauer E. Hypoplasticmodeling of moisture-sensitive weathered rockfill materials. Acta Geotechnica, 2009, 4: 261–272

doi: 10.1007/s11440-009-0099-y
Gudehus G. Acomprehensive constitutive equation for granular materials. Soils and Foundation, 1996, 36 (1): 1–12
Bauer E. Calibrationof a comprehensive hypoplastic model for granular materials. Soils and Foundation, 1996, 36(1): 13–26
Fang Xushun. Test study and numerical simulation on wetting deformation of gravelsand. Dissertation for the Master Degree. Nanjing: Hohai University, 2005 (in Chinese)
Kolymbas D. Ageneralized hypoelastic constitutive law. In: Proceedings of 11th International Conference on Soil Mechanics andFoundation Engineering. Rotterdam: Balkema, 1985, 5: 2626
Wu W, Kolymbas D. Numerical testing of thestability criterion for hypoplastic constitutive equations. Mechanics of Materials, 1990, 9(3): 245–253

doi: 10.1016/0167-6636(90)90006-2
Kolymbas D. Anoutline of hypoplasticity. Archive of AppliedMechanics, 1991, 61(3): 143–151
Bauer E, Herle I. Stationary states in hypoplasticity. In: Kolymbas D, ed. Constitutive Modelingof Granular Materials. Berlin: Springer-Verlag, 2000, 167–192
Goldscheider M. Truetriaxial tests on dense sand. In: Gudehus G, Darve F, Vardoulakis I, eds. International Workshop on Constitutive Relations for Soils, Grenoble. Rotterdam: Belkema, 1982, 11–54
Wu W, Niemunis A. Failure criterion, flow ruleand dissipation function derived from hypoplasticity. Mechanics of Cohesive-Frictional Materials, 1996, 1: 145–163

doi: 10.1002/(SICI)1099-1484(199604)1:2<145::AID-CFM8>3.0.CO;2-9
Bauer E. Constitutivemodeling of critical states in hypoplasticity. In: Proceedings of the Fifth International Symposium on Numerical Modelsin Geomechanics, Davos. Rotterdam: Balkema, 1995, 15–20
Wu W, Kolymbas D. Hypoplasticity then and now. In: Kolymbas D, ed. Constitutive Modelingof Granular Materials. Berlin: Springer-Verlag, 2000, 57–105
Gudehus G. Attractors,percolation thresholds and phase limits of granular soils. In: Behringer R P, Jenkins J T, eds. Powders and Grains. Rotterdam: Balkema, 1997, 169–183
Bauer E. Conditionsfor embedding Casagrande’s critical states into hypoplasticity. Mechanics of Cohesive-Frictional Materials, 2000, 5: 125–148

doi: 10.1002/(SICI)1099-1484(200002)5:2<125::AID-CFM85>3.0.CO;2-0
Matsuoka H, Nakai T. Stress-strain relationshipof soil based on the ‘SMP’. In: Proceedings of Speciality Session 9, IX International Conferenceon Soil Mechanics and Foundation Engineering, Tokyo. 1977, 153–162
Herle I, Gudehus G. Determination of parametersof a hypoplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-Frictional Materials. 1999, 4: 461–486

doi: 10.1002/(SICI)1099-1484(199909)4:5<461::AID-CFM71>3.0.CO;2-P
Related articles from Frontiers Journals
[1] Mahdi AREZOUMANDI, Mark EZZELL, Jeffery S VOLZ. A comparative study of the mechanical properties, fracture behavior, creep, and shrinkage of chemically based self-consolidating concrete[J]. Front Struc Civil Eng, 2014, 8(1): 36-45.
[2] Zhongzhi FU, Sihong LIU, Zijian WANG. The strength–dilatancy characteristics embraced in hypoplasticity[J]. Front Struc Civil Eng, 2013, 7(2): 178-187.
[3] Hui ZHU, Yuching WU. Finite element analysis of creep for plane steel frames in fire[J]. Front Struc Civil Eng, 2012, 6(3): 297-307.
[4] Erich BAUER, Zhongzhi FU, Sihong LIU. Influence of pressure and density on the rheological properties of rockfills[J]. Front Struc Civil Eng, 2012, 6(1): 25-34.
[5] Marta DOLEZALOVA, Ivo HLADIK. Long-term behavior and safety assessment of Sance Rockfill Dam[J]. Front Arch Civil Eng Chin, 2011, 5(1): 79-89.
[6] Pusheng SHEN, Hui FANG, Xinhong XIA. Effect of concrete creep and shrinkage on tall hybrid-structures and its countermeasures[J]. Front Arch Civil Eng Chin, 2009, 3(2): 234-239.
[7] SHAO Xudong, LI Lifeng, YANG Jianjun. Experimental research on the creep behavior and bearing capacity of repeatedly prestressed concrete beam[J]. Front. Struct. Civ. Eng., 2007, 1(3): 305-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed