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The dynamics of measurement’s uncertainty via entropy for a one-dimensional Heisenberg XY Z mode
is examined in the presence of an inhomogeneous magnetic field and Dzyaloshinskii–Moriya (DM)
interaction. It shows that the uncertainty of interest is intensively in connection with the filed’s tem-
perature, the direction-oriented coupling strengths and the magnetic field. It turns out that the stronger
coupling strengths and the smaller magnetic field would induce the smaller measurement’s uncertainty
of interest within the current spin model. Interestingly, we reveal that the evolution of the uncertainty
exhibits quite different dynamical behaviors in antiferromagnetic (Ji > 0) and ferromagnetic (Ji < 0)
frames. Besides, an analytical solution related to the systematic entanglement (i.e., concurrence) is also
derived in such a scenario. Furthermore, it is found that the DM-interaction is desirably working to di-
minish the magnitude of the measurement’s uncertainty in the region of high-temperature. Finally, we
remarkably offer a resultful strategy to govern the entropy-based uncertainty through utilizing quan-
tum weak measurements, being of fundamentally importance to quantum measurement estimation in
the context of solid-state-based quantum information processing and computation.
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1 Introduction

Heisenberg uncertainty principle presented in 1927 is gen-
erally acknowledged as a distinctive feature of quantum
mechanics differing from the classical physics, and it pro-
vides an essential restriction to the precision of the mea-
surement’s outcomes for a pair of incompatible observ-
ables [1]. Canonically, Heisenberg’s uncertainty relation
can be expressed as: ∆x∆px ≥ ℏ/2 [2] for position x and
momentum px [3, 4]. Before long, Kennard [4] and Robert-
son [5] put forward a generalization of the relation into a
so-called standard deviation [6, 7]

∆R ·∆Q ≥ 1

2
|⟨[R,Q]⟩| , (1)

for two arbitrary non-commuting observables R and Q.
Noting that, [R,Q] = RQ−QR stands for the commuta-
tor. Due to that the lower bound in Eq. (1) is dependent of
the systematic state, the well-known deviation in essence
is not an optimal quantification way regarding the mea-
surement’s uncertainty. To improve the methods for sur-
veying the uncertainty of interest, Kraus had suggested a
simplified description in terms of the concept of Shannon
entropy [8] and later strengthened by Maassen and Uffink
[9] into alleged entropic uncertainty relation as

H(R) +H(Q) ≥ − log2 c(R,Q), (2)

where the Shannon entropy H(Y ) = −
∑

i pi log2 pi with
operator Y ∈ {R,Q} and pi = ⟨yi|ρ|yi⟩ in a quantum sys-
tem ρ, which indicates the Shannon entropy of the prob-
ability distribution of the outcomes when Y is measured
[10–12]. Note that, |yi⟩ stand for the eigenvectors of the
observables Y . Besides, − log2 c(R,Q) shows the comple-
mentarity of R and Q, and c(R,Q) = maxi,j |⟨φi|ϕj⟩|2,
where |φi⟩ and |ϕj⟩ denote the eigenvectors of R and Q,
respectively.

In recent years, a new expression of uncertainty relation
[13, 14] has been presented when the quantum entangle-
ment appears, and demonstrated by some promising ex-
periments [15–17]. Generally, this relation could be elabo-
rated by a uncertainty game within a couple of legitimate
participants (say, Alice and Bob). At start, there have two
entangled particles A and B in Bob’s site. Bob then de-
livers A to Alice via quantum channel, and subsequently
Alice shall choose one of R and Q to perform a measure-
ment on A. Finally, Alice sends a classical message to Bob
to tell which measurement she chooses. As a result, such
actions will enable Bob to predict A’s measurement out-
come under a minimal declination. In this scenario, parti-
cle A that is sent to Alice is denominated as the measured
system. Contrarily, we denominate particle B as memory
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system. Quantitatively, the Bob’s uncertainty about the
result of measurement can be provided by entanglement-
assisted entropic uncertainty relation (EUR) [14], viz.,

S(R|B) + S(Q|B) ≥ S(A|B)− log2c(R,Q), (3)

with the above, S(A|B) = S(ρAB) − S(ρB) [2] is a con-
ditional von Neumann entropy. Towards the left item
of Eq. (3), S(Y |B) = S(ρY B) − S(ρB) stands for the
uncertainty of the measurement outcomes of Y condi-
tioned on the underlying information reserved in parti-
cle B. From Eq. (3), one can realize that, Bob can per-
fectly predict Alice’s measuring outcomes if A and B are
maximally entangled owing to S(A|B) = log2 c. In ad-
dition, S(ρY B) = −

∑
i λi log2 λi [18, 19] with ρY B =∑

j(|yj⟩⟨yj |⊗I)ρAB(|yj⟩⟨yj |⊗I), where λi are denoted as
the eigenvalues of ρY B , and |yj⟩ are the eigenstates of Y .

Amazingly, entanglement-assisted EUR has burst out
many potential applications in the realm of quantum in-
formation science, including quantum metrology [20, 21],
entanglement witnessing [14–16, 22–24], quantum transi-
tion [25, 26], quantum key distribution [27, 28], cryptogra-
phy [29, 30] and quantum randomness [31, 32]. Driven by
its appealing performance, the entropic uncertainty rela-
tion had received much attention by a number of authors.
Explicitly, several tighter bounds for EUR had been orig-
inally put forward by [33, 34], and the evolution’s charac-
teristic of EUR in various realistic environments [35–47]
had been reported.

During various solid-state systems, Heisenberg spin
chain is usually deemed as one of remarkable and versatile
systems due to well-scalable features during quantum in-
formation processing [48–50]. With this in mind, clarifying
how the measurement uncertainty evolves in Heisenberg
spin models is a basic question in the context of quan-
tum measurement estimation. In this article, we will focus
on exploring the dynamic of EUR for a two-spin Heisen-
berg XY Z model under a magnetic field and a canonical
Dzyaloshinskii–Moriya (DM) interaction.

The remainder of this article is arranged as follows. In
Section 2, we will firstly introduce the theoretical model

under a Heisenberg XY Z chain with an external mag-
netic field and x-direction DM interaction. Specifically,
we detailedly discuss the effect of the magnetic field and
DM-interaction on entropic uncertainty and derive the dy-
namic of the systematic entanglement in Section 3. We
furthermore put forward a method to steer the measure-
ment’s uncertainty by means of quantum weak measure-
ment in Section 4. Finally, a concise conclusion will be
given in Section 5.

2 Theoretical model

Let us recall a two-qubit spin-1/2 Heisenberg XY Z
mode. Technically, its Hamiltonian in the presence of x-
component Dzyaloshinskii–Moriya interaction Dx and in-
homogeneous magnetic fields can be written as [51]

H = Jxσ
x
1σ

x
2 + Jyσ

y
1σ

y
2 + Jzσ

z
1σ

z
2 +Dx(σ

y
1σ

z
2 − σz

1σ
y
2 )

+ (M +m)σx
1 + (M −m)σx

2 , (4)

where Ji are real-valued coupling strengths and σi
k (i =

x, y, z) are denoted as spin-1/2 Pauli operators in the
Hilbert space of the k-th qubit, respectively. Canonically,
with respect to the cases of Jx = Jy = Jz, Jx = Jy ̸= Jz
and Jx ̸= Jy ̸= Jz, the Heisenberg chains can be defined
by XXX, XXZ and XY Z models. Meanwhile, Ji > 0
means the antiferromagnetic regime, and Ji < 0 means
the ferromagnetic one. M stands for the strength of the
magnetic field, and m represents the magnitude of the
field’s inhomogeneity.

At a thermal equilibrium, the density matrix of a two-
qubit anisotropic Heisenberg XY Z chain system can be
expressed by [51]

ρ(T ) =
1

2N


L+ G∗

+ G∗
− L−

G+ F+ F− G−
G− F− F+ G+

L− G∗
− G∗

+ L+

 , (5)

where

N = 2
(

e
−Jx
T cosh ω1

T
+ e

Jx
T cosh ω2

T

)
, (6)

L± = e−
Jx+ω1

T sin2 ϕ1 + e−
Jx−ω1

T sin2 ϕ2 ± e
Jx−ω2

T sin2 ϕ3 ± e
Jx+ω2

T sin2 ϕ4, (7)

F± = e−
Jx+ω1

T cos2 ϕ1 + e−
Jx−ω1

T cos2 ϕ2 ± e
Jx−ω2

T cos2 ϕ3 ± e
Jx+ω2

T cos2 ϕ4, (8)

G± = e−
Jx+ω1

T sinϕ1 cosϕ1 + e−
Jx−ω1

T sinϕ2 cosϕ2 ± e
Jx−ω2

T χ sinϕ3 cosϕ3 ± e
Jx+ω2

T χ sinϕ4 cosϕ4, (9)

with ϕ1,2 = arctan 2M
Jy−Jz±ω1

, ϕ3,4 = arctan 2
√

m2+D2
x

−Jy−Jz±ω2
,

χ = −iDx−m√
m2+D2

x

, ω1 =
√
(Jy − Jz)2 + 4M2, and ω2 =√

(Jy + Jz)2 + 4D2
x + 4m2. Where, T represents the tem-

perature of the field in units of the Boltzmann constant

kB .
To probe the uncertainty in such a model, we take into

account a two-spin system with an initial state |Ψ⟩in =
cos θ

2 |10⟩ + eiϕ sin θ
2 |01⟩ with θ ∈ [0, π], and ϕ ∈ [0, 2π].

Based on performing a joint measurement and unitary
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transformation on the input system we can obtain the
final state as the form of [51, 52]

ρout =
∑
j,k

pj,k(σj ⊗ σk)ρin(σj ⊗ σk), (10)

where σj (j = 0, x, y, z) represents the identity matrix I
and Pauli matrices respectively, and

pj,k = Tr[Ejρ(T )]Tr[Ekρ(T )] (11)

with
∑
pj,k = 1 and ρin = |Ψ⟩in⟨Ψ|. Within the above,

E0 = |φ−⟩⟨φ−|, Ex = |ψ−⟩⟨ψ−|, Ey = |ψ+⟩⟨ψ+| and
Ez = |φ+⟩⟨φ+| with |φ±⟩ = 1√

2
(|01⟩ ± |10⟩) and |ψ±⟩ =

1√
2
(|00⟩ ± |11⟩).

Through calculating Eq. (10), we thus obtain the output
state as

ρAB=
1

N 2



L+F+ 0 0
sin θL−F−

cosϕ−i cos θ sinϕ

0
e−iϕ[(1+cos θ)L2

+−e2iϕ(cos θ−1)F 2
+]

2(cosϕ−i cos θ sinϕ)

sin θ(L2
−+F 2

−)

2(cosϕ−i cos θ sinϕ)
0

0
sin θ(L2

−+F 2
−)

2(cosϕ−i cos θ sinϕ)

e−iϕ[−e2iϕ(cos θ−1)L2
++(1+cos θ)F 2

+]

2(cosϕ−i cos θ sinϕ)
0

sin θL−F−

cosϕ−i cos θ sinϕ
0 0 L+F+


,

(12)

which belongs to an ensemble of states with X-structure
density matrices, hereafter ρij represent the elements of
the density matrix ρAB .

3 Effect of inhomogeneous magnetic field and
DM-interaction on entropic uncertainty
relation

In this section, let us focus on investigating how the ex-
ternal magnetic field and the DM-interaction collectively
work on the measurement’s uncertainty in the current con-
sideration. To do so, we can resort to σx and σz as the two
incompatibility. Canonically, an arbitrary two-qubit state
with X-structure density matrix can be described by

ρXAB =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

 . (13)

Thereby, we could derive two post-measurement states
ρσx

B and ρσzB for the conditional von Neumann entropies
in Eq. (3) as

ρσxB =
ρ11 + ρ33

2
(|00⟩⟨00|+ |10⟩⟨10|)

+
ρ22 + ρ44

2
(|01⟩⟨01|+ |11⟩⟨11|)

+
ρ14 + ρ32

2
(|00⟩⟨11|+ |10⟩⟨01|)

+
ρ41 + ρ23

2
(|01⟩⟨10|+ |11⟩⟨00|),

ρσzB = ρ11|00⟩⟨00) + ρ22|01⟩⟨01|
+ ρ33|10⟩⟨10|+ ρ44|11⟩⟨11|, (14)

respectively.
Then the von Neumann entropies would be given as

S(ρσxB) = Hbin

(
1−

√
1− 4η

2

)
+ 1, (15)

S(ρσzB) = −
∑
i

ρii log2 ρii, (16)

where the binary entropy denotes Hbin(ξ) = −ξ log2 ξ −
(1 − ξ) log2(1 − ξ) and η = ρ11ρ22 + ρ22ρ33 + ρ33ρ44 +
ρ44ρ11 − ρ14ρ41 − ρ32ρ41 − ρ23ρ14 − ρ23ρ32.

Due to ρB = TrA(ρAB), one easily attains the eigenval-
ues of B’s reduced density matrix as ρ11+ρ33 and ρ22+ρ44,
the left-hand side (LHS) of Eq. (3) becomes

UL = S(ρσxB) + S(ρσzB)− 2Hbin(ρ11 + ρ33). (17)

Revisiting the density matrix in Eq. (13), we
can derive the eigenvalues of ρAB as λAB

1,2 =
1
2 (ω ±

√
ω2 − 4ρ11ρ44 + 4ρ14ρ41) and λAB

3,4 = 1
2 (υ ±√

υ2 − 4ρ22ρ33 + 4ρ23ρ32) with ω = ρ11 + ρ44 and υ =
ρ22 + ρ33. Meanwhile, the overlap c of two Pauli observ-
ables always equals to 1

2 . Therefore, the lower bound in
Eq. (3) can be analytically expressed by

UR = 1−Hbin(ρ11 + ρ33)−
∑
i

λAB
i log2 λAB

i . (18)

Through substituting Eq. (12) into Eqs. (17) and (18),
we can derive the exact expressions of UL and UR in the
current scenario considered here, respectively.

Firstly, we focus on how the field temperature T influ-
ences the measurement’s uncertainty and its bound. To
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do so, we depict the uncertainty of interest and the uncer-
tainty’s bound in Eq. (3) as functions of T for the magnetic
fields with inhomogeneity m = 0.2 and m = 1.0 respec-
tively, as shown in Fig. 1. Following the graphs, it is clear
to show that the entropic uncertainty and lower bound
is going to inflate with the growing temperature T and
asymptotically tend into a fixed value, showing UL ≥ UR

holds. It displays that the smaller temperature can induce
the smaller uncertainty in our considered system. Note
that, the uncertainty of interest is closely equivalent to
the bound UR in the regions of relatively high-temperature
and low-temperature. In this sense, we can say that the
bound can intrinsically and explicitly reflect the measure-
ment uncertainty in those referred regions.

Additionally, we also examine the systematic dynamic
of entanglement, which is quantified by concurrence [53].
Typically, the concurrence of an arbitrary two-qubit state
ρAB can be written as

C(ρAB) = max{0,√ε1 −
√
ε2 −

√
ε3 −

√
ε4}, (19)

where, εi (i = 1, 2, 3, 4) represent the decreasing-order
eigenvalues of the density matrix ρAB(σ

y
A⊗σy

B)ρ
∗
AB(σ

y
A⊗

σy
B). For simplicity, we offer the form of the concurrence

with respect to the class of states in Eq. (13), which can
be written as C(ρAB) = 2max{0, |ρ14| −

√
ρ22ρ33, |ρ23| −√

ρ11ρ44}. As a result, we can exactly derive the concur-
rence in our considered system as

Fig. 1 Entropic uncertainty, concurrence (C) versus the
temperature T . Noting that, UL stands for the left-hand side
of (3) and UR represents the right-hand side of (3). In the
Graphs, the black solid lines describe UL, the red dash-dotted
lines describe UR and the blue solid lines describe the system’s
concurrence. (a) m = 0.2 and (b) m = 1.0. For all plotted
with Jx = 13/3, Jy = −7/3, Jz = 1.0, M = 1.0, Dx = 0.2,
θ = π/2 and ϕ = 0.

C(ρout)=2max
{
0,

∣∣∣∣ sin θL−F−

(cosϕ−i cos θ sinϕ)N 2

∣∣∣∣− e−iϕ
√
((1+cos θ)L2

+−e2iϕ(cos θ−1)F 2
+)((1+cos θ)F 2

+−e2iϕ(cos θ−1)L2
+)

2(cosϕ−i cos θ sinϕ)N 2
,∣∣∣∣ sin θ(L2

− + F 2
−)

2(cosϕ− i cos θ sinϕ)N 2

∣∣∣∣− ∣∣∣∣L+F+

N 2

∣∣∣∣
}
. (20)

Following Fig. 1, the higher temperature will lead to
the smaller entanglement (C), and vice versa. With the
above analysis in mind, one can realize that the variation
trend of the concurrence is considerably opposite to those
of both the uncertainty and the bound with growth of T .
Based on comparing Figs. 1(a) and (b), we obtain that
the stronger inhomogeneity m of the magnetic field will
weaken the entanglement between A and B.

We now shift our focus toward probing how the cou-
pling strengths between two-spin affect the measured un-
certainty and the lower bound. As shown in Fig. 2, when
the system is lying in the case of Jz > 0 (antiferro-
magnetic), we can see that the uncertainty to be probed
monotonously decreases with Jz growing, as plotted in
Fig. 2(b). In sharp comparison with the antiferromagnetic
regime, the evolution of the measurement’s uncertainty is
not monotonous when Jz < 0 in Fig. 2(a). To be explicit,
the uncertainty will firstly increase and subsequently de-
crease with the increasing |Jz|. It is worth to noting that,
the uncertainty will saturate into a fixed value as the ab-

solute value of Jz becomes large enough. With the differ-
ent dynamical phenomena of the uncertainty, it can be
explained from the viewpoint of the systematic entangle-
ment (concurrence). In the ferromagnetic regime, the en-
tanglement will first reduce and gradually recover up to a
maxima with the growing Jz, this naturally leads to that
the uncertainty will first inflate and then decrease up to
a fixed value. Contrarily, in the antiferromagnetic case,
the entanglement will be lift always with the growing Jz,
which will definitely result in the monotonic reduction of
the uncertainty. Interestingly, UL is close to UR all the
time, which implies the Berta’s bound is a good quantifier
to predict the measurement outcome in these cases men-
tioned above. Furthermore, we can see the concurrence is
nearly anti-correlated to the uncertainty relation, which
is pretty compatible with the statement we made before.

With regard to external magnetic field, it is required
to clarify how its effect on the uncertainty is. To do so,
we draw the uncertainty as functions of the M and m as
displayed in Fig. 3. Following the figure, it is not difficult
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Fig. 2 Entropic uncertainty, concurrence (C) as a function
of Jz. The black solid lines plot UL, red dash-dotted lines plot
UR and blue solid lines plot the concurrence. Noting that, UL

stands for the left item of Eq. (3) and UR represents the right
item of Eq. (3). Here, (a) Jx = −13/3 and Jy = −7/3; (b)
Jx = 13/3 and Jy = 7/3. For all plotted with m = 0.5, M =
1.0, Dx = 0.2, T = 1.0, θ = π/2 and ϕ = 0.

Fig. 3 Entropic uncertainty, concurrence (C) versus the
magnetic field M and the inhomogeneity m respectively. In
this figure, black solid lines depict UL, red dash-dotted lines
depict UR and blue solid lines depict the concurrence. Noting
that, UL stands for the left item of Eq. (3) and UR represents
the right item of Eq. (3). For all, Jx = 13

3
, Jy = − 7

3
, Jz = 1.0,

Dx = 0.2, T = 1.0, θ = π
2

and ϕ = 0. Additionally, in (a) we
have m = 0.5, and M = 1.0 is chosen in (b).

to find that the uncertainty monotonously boosts with
the growth of both the strength of external magnetic field
M and the degree of inhomogeneous field m. That is to
say, the smaller M and m can lead to smaller uncertainty
for the measurement, which in essence matches with our
conclusions made before according to Fig. 1. On balance,
either stronger external magnetic field and larger inho-
mogeneity will destroy the entanglement, this inevitably
results in the increase of the measurement’s uncertainty.

Particularly, we further examine the dynamical traits
of the measurement’s uncertainty in the presence of x-
direction DM interaction. For the varying DM interac-
tion strength Dx, we find that the effect of Dx on the
uncertainty relation has positive and negative aspects re-
spectively for different temperature regions as shown in
Fig. 4(a). It is clear that the stronger DM-interaction is
able to distinctly reduce the uncertainty via entropy in
the high-temperature regions. Next, let us turn to discuss
the case in the region of low-temperature, and it can be
seen that the uncertainty increases with the growth of Dx.
In principle, a spin system is relatively hard to prepare in
an extreme low-temperature in reality. As a result, we can

Fig. 4 (a) The dynamic of EUR with respect to T and Dx.
Here, we take Jz = 1.0 and Jy = −7/3. (b) The dynamic of
EUR with respect to Jy and Jz. Here, we take T = 1.0 and
Dx = 0.2. For all plots, we take Jx = 13/3, M = 1.0, m = 0.5,
θ = π/2 and ϕ = 0.
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say the DM-interaction is an alternative and valid method
to reduce the magnitude of the uncertainty in the current
scenario. From Fig. 4(b), it also shows that the uncertainty
has different variation tendency in antiferromagnetic case
(Ji > 0) and ferromagnetic case (Ji < 0) respectively, as
stated in Fig. 2.

4 To reduce the measurement’s uncertainty
with adopting a local non-unitary operation

Because a quantum system is naturally exposed to its sur-
rounding reservoirs, it unavoidably interacts with the en-
vironment noises. Thereby, a quantum system will give
rise to quantum decoherence and dissipative effects. To
suppress attenuation of an ideal quantum system, which is
recognized as an important cornerstone in quantum preci-
sion measurement, Aharonov [54] has put forward a novel
strategy called quantum weak measurement (WM) [54–
60]. Enlighten by this idea, we would like to ask if such

an operation is effective to degrade the measurement un-
certainty when enhancing the system’s robustness. Fortu-
nately, our investigation has proofed that the answer is
positive. In the following, we will discuss how this opera-
tion influences on our concern in details.

First of all, let us briefly recall quantum weak measure-
ment, which is usually mapped into the following operator

Kα =

(
1 0
0

√
1− rα

)
. (21)

This operator is non-unitary, where Kα represents the op-
erator acting on particle α (α ∈ {A,B}) and the measure-
ment strength rα ∈ [0, 1]. Herein, we assume that such
operations are performed on both A and B. After that,
the system’s state can be described by

ρKAB =
(KA ⊗KB)ρAB(KA ⊗KB)

†

Tr [(KA ⊗KB)ρAB(KA ⊗KB)†]
, (22)

which can be rewritten by a density matrix ρKAB(t) of form

ρKAB(t) =
L+F+

∆
|00⟩ ⟨00|+

e−iϕ(1− rB)
[
L2
+(cos θ + 1)− e2iϕF 2

+(cos θ − 1)
]

2∆(cosϕ− i cos θ sinϕ) |01⟩ ⟨01|

+
e−iϕ(1− rA)

[
F 2
+(cos θ + 1)− L2

+e2iϕ(cos θ − 1)
]

2∆(cosϕ− i cos θ sinϕ) |10⟩ ⟨10|+ (1− rA)(1− rB)L+F+

∆
|11⟩ ⟨11|

+
sin θ

√
1− rA

√
1− rB

2∆(cosϕ− i cos θ sinϕ)
[
2L−F−(|00⟩⟨11|+ |11⟩ ⟨00|) +

(
L2
− + F 2

−
)
(|01⟩ ⟨10|+ |10⟩ ⟨01|)

]
(23)

with

∆ = L+F+ + L+F+(1− rA)(1− rB) +
e−iϕ(1− rA)

[
F 2
+(cos θ + 1)− L2

+e2iϕ(cos θ − 1)
]

2(cosϕ− i cos θ sinϕ)

+
e−iϕ(1− rB)

[
L2
+(cos θ + 1)− e2iϕF 2

+(cos θ − 1)
]

2(cosϕ− i cos θ sinϕ) . (24)

For convenience, we hereafter take rA = rB = r in the
current scenario. By linking Eqs. (14)–(18) with Eqs. (23)–
(24), the entropic uncertainty relation for the system
ρKAB(t) to be probed can be obtained analytically.

By means of achieving the local weak measurement on
the bipartite AB, one can see the relationship between the
measurement’s strength r and the uncertainty of interest,
as shown in Fig. 5 when M is different with T = 3.0 and
T = 4.0 respectively. In Figs. 5(a) and (b), it is found
that the measurement uncertainty validly decreases with
the growth of the operational strength r. Meanwhile, we
can obtain the temperature also can influence the outcome
of the WMR by comparing Figs. 5(a) and (b). In light of
the above statements, one can attain that the local weak
measurement can effectively degraded the magnitude of
the uncertainty. In this sense, we claim the quantum weak
measurement is a good candidate for the reduction of the
measure uncertainty in our consideration.

It is worth noting that the quantum weak measure-
ments are perfect to achieve our aim in the region of high-
temperature, and is effective partly in low-temperature
regions, as shown in Fig. 6(a). As to these effective re-
gions, the uncertainty will decrease monotonically when
the measurement strength γ increases, which reflects that
the WM can perfectly reduce the uncertainty of interest.
In general, the state will turn to a mixed state from pu-
rity state in the process of a qubit evolving from ground
state to excited state, and thus the field will weaken the
systematic entanglement between particle A and B. For
high-temperature regions, the weak measurement on both
A and B will prompt the conversion of from the excited
state to the ground state, which will lead to the increase
of systematic entanglement (concurrence). By compari-
son, in the region of low-temperature, it will restrain the
probability of the above-mentioned conversion. As a re-
sult, the effect of weak measurement is not obvious. From
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Fig. 5 Measurement uncertainty versus the magnetic field
M with regard to different operational strengths r. r ranges
from 0 to 0.8 from top to bottom. Here, (a) T = 3.0 and
(b) T = 4.0. For all plotted with Jx = 13/3, Jy = −7/3,
Dx = 0.2, Jz = 1.0, m = 0.5, θ = π/2 and ϕ = 0.

Fig. 6(b) with T = 2.5, we can see that the quantum
weak measurement is not effective if θ → π and the mea-
surement strength is not strong enough. However, we can
realize that WM also can validly reduce the uncertainty in
the relatively large measurement strength regions, which
meets our expectation. Thus, it can be seen that the quan-
tum weak measurements are not effective for the all situ-
ations, but the quantum weak measurements are working
to reduce the uncertainty of interest in the most cases
considered here.

5 Conclusion

In summary, we have studied the dynamical characteristic
of the measurement’s uncertainty with respect to a two-
qubit Heisenberg XY Z spin model with the DM inter-
action in the background of an inhomogeneous magnetic
field, as illustrated in Fig. 7. Specially, we take into ac-
count the effect of the field temperature T on the entropic
uncertainty with different m. We find that the smaller de-
gree of the inhomogeneous field would result in a smaller
uncertainty of the measurement in the low-temperature
region. And it reveals that the evolution of the uncertainty
exhibits quite different dynamical behaviors in antiferro-
magnetic and ferromagnetic cases. In addition, we analyze
the DM-interaction will demonstrate positive and negative
influence for different temperature regions. It shows that

Fig. 6 (a) The dynamic of EUR with respect to T and r.
The amplitude angle of the initial state θ = π/2 is chosen.
(b) The dynamic of EUR with respect to θ and r. The field
temperature is taken as T = 5/2. For all plots, Jx = 13/3,
Jy = −7/3, M = 0.5, Jz = 1.0, m = 0.5 and the phase ϕ = 0.

Fig. 7 The schematic diagram for the entire evolution with
the time from the left to right in the current scenario. Note
that, DM means Dzyaloshinskii–Moriya interaction and WM
stands for quantum weak measurement.

the DM-interaction is desirably working to effectively re-
duce the magnitude of the measurement uncertainty in
the region of high-temperature. Furthermore, we propose
a strategy—quantum weak measurement—to steer the un-
certainty, which can validly reduce the uncertainty of in-
terest in the current scenario mostly. Thereby, we argue
that our results might benefit to in-depth understanding
for the entanglement dynamic of the spin-based solid-state
systems, and also impose the illumination of quantum
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measurement precision in practical quantum information
processing.
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