Please wait a minute...

Frontiers of Physics

Front. Phys.    2018, Vol. 13 Issue (1) : 138201     https://doi.org/10.1007/s11467-017-0685-7
RESEARCH ARTICLE |
Contrasting microscopic interactions determine the properties of water/methanol solutions
Carmelo Corsaro1,2(), Francesco Mallamace1,2,3,4, Sebastiano Vasi2, Sow-Hsin Chen3(), H. Eugene Stanley4, Domenico Mallamace5()
1. CNR-IPCF Messina, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
2. Dipartimento MIFT, Sezione di Fisica, Università di Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
3. Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4. Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA
5. Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase- CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
Download: PDF(979 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Herein we study the different microscopic interactions occurring in water/methanol solutions at different methanol molar fractions, using NMR spctroscopy. Temperature was found to determine which interaction dominates. It was found that the mixing between water and methanol is non-ideal because of the presence of interactions like hydrophobicity and hydrophilicity. These results indicate that the competition between hydrophilic and hydrophobic interactions is different in different thermal regions, and that the physical properties of the solution are determined by the character of the solution itself, which in turn depends on the mole fraction of methanol and on the temperature.

Keywords aqueous solutions      hydrophobicity      NMR      hydrophilicity     
This article is part of themed collection: Water and Water Systems
Corresponding Authors: Carmelo Corsaro   
Issue Date: 28 February 2018
 Cite this article:   
Carmelo Corsaro,Francesco Mallamace,Sebastiano Vasi, et al. Contrasting microscopic interactions determine the properties of water/methanol solutions[J]. Front. Phys. , 2018, 13(1): 138201.
 URL:  
http://journal.hep.com.cn/fop/EN/10.1007/s11467-017-0685-7
http://journal.hep.com.cn/fop/EN/Y2018/V13/I1/138201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Carmelo Corsaro
Francesco Mallamace
Sebastiano Vasi
Sow-Hsin Chen
H. Eugene Stanley
Domenico Mallamace
1 J. H.Guo, Y.Luo, A.Augustsson , S.Kashtanov, J. E.Rubensson, D. K.Shuh , H.Ågren, and J.Nordgren, Molecular structure of alcohol–water mixtures, Phys. Rev. Lett. 91(15), 157401 (2003)
https://doi.org/10.1103/PhysRevLett.91.157401
2 T.Yamaguchi, K.Hidaka, and A. K.Soper , The structure of liquid methanol revisited: A neutron diffraction experiment at –80°C and+25°C, Mol. Phys. 96(8), 1159(1999)
https://doi.org/10.1080/00268979909483060
3 R.Ludwig, Water: From clusters to the bulk, Angew. Chem. Int. Ed. 40(10), 1808(2001)
https://doi.org/10.1002/1521-3773(20010518)40:10<1808::AID-ANIE1808>3.0.CO;2-1
4 A. K.Soper, L.Dougan, J.Crain , and J. L.Finney , Excess entropy in alcohol–water solutions: A simple clustering explanation, J. Phys. Chem. B110(8), 3472(2006)
https://doi.org/10.1021/jp054556q
5 Y.Zhong, G. L.Warren, and S.Patel , Thermodynamic and structural properties of methanol–water solutions using non-additive interaction models, J. Comput. Chem. 29(7), 1142(2008)
https://doi.org/10.1002/jcc.20877
6 F.Mallamace, C.Corsaro, D.Mallamace , C.Vasi,S.Vasi, and H. E.Stanley , Dynamical properties of watermethanol solutions, J. Chem. Phys. 144(6), 064506(2016)
https://doi.org/10.1063/1.4941414
7 R. K.Lam, J. W.Smith, and R. J.Saykally , Communication: Hydrogen bonding interactions in water–alcohol mixtures from X-ray absorption spectroscopy, J. Chem. Phys. 144(19), 191103(2016)
https://doi.org/10.1063/1.4951010
8 F.Mallamace, P.Baglioni, C.Corsaro , S. H.Chen, D.Mallamace, C.Vasi , and H. E.Stanley , The influence of water on protein properties, J. Chem. Phys. 141(16), 165104(2014)
https://doi.org/10.1063/1.4900500
9 F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, H. E.Stanley , and S. H.Chen, Some thermodynamical aspects of protein hydration water, J. Chem. Phys. 142(21), 215103(2015)
https://doi.org/10.1063/1.4921897
10 R. E.Gibson, The compressions and specific volumes of aqueous solutions of resorcinol and methanol at 25° and the behavior of water in these solutions, J. Am. Chem. Soc. 57(9), 1551(1935)
https://doi.org/10.1021/ja01312a013
11 H. S.Frankand M. W. Evans, Free Volume and Entropy in Condensed Systems III. Entropy in binary liquid mixtures; Partial molal entropy in dilute solutions; Structure and thermodynamics in aqueous electrolytes, J. Chem. Phys. 13(11), 507(1945)
https://doi.org/10.1063/1.1723985
12 Y.Koga, K.Nishikawa, and P.Westh , “Icebergs” or no “icebergs” in aqueous alcohols?: Compositiondependent mixing schemes, J. Phys. Chem. A108(17), 3873(2004)
https://doi.org/10.1021/jp0312722
13 C.Corsaro, R.Maisano, D.Mallamace , and G.Dugo, 1H NMR study of water/methanol solutions as a function of temperature and concentration, Physica A392(4), 596(2013)
https://doi.org/10.1016/j.physa.2012.11.008
14 W.Kauzmann, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14, 1 (1959)
https://doi.org/10.1016/S0065-3233(08)60608-7
15 C.Corsaro, J.Spooren, C.Branca , N.Leone, M.Broccio, C.Kim , S. H.Chen, H. E.Stanley, and F.Mallamace , Clustering dynamics in water/methanol mixtures: A nuclear magnetic resonance study at 205 K<T<295 K, J. Phys. Chem. B112(34), 10449(2008)
https://doi.org/10.1021/jp803456p
16 S.Dixit, J.Crain, W. C. K.Poon , J. L.Finney, and A. K. Soper, Molecular segregation observed in a concentrated alcohol water solution, Nature416(6883), 829(2002)
https://doi.org/10.1038/416829a
17 L.Dougan, R.Hargreaves, S. P.Bates , J. L.Finney, V.Réat, A. K.Soper , and J.Crain, Segregation in aqueous methanol enhanced by cooling and compression, J. Chem. Phys. 122(17), 174514(2005)
https://doi.org/10.1063/1.1888405
18 M.Požar, A. Kerasidou, B.Lovrinčević , L.Zoranić, M. Mijaković, T.Primorac, F.Sokolić , V.Teboul, and A.Perera, The microscopic structure of cold aqueous methanol mixtures, J. Chem. Phys. 145(14), 144502(2016)
https://doi.org/10.1063/1.4964487
19 L.Dougan, S. P.Bates, R.Hargreaves , J. P.Fox,J.Crain, J. L.Finney , V.Reat, and A. K. Soper, Methanol-water solutions: A bi-percolating liquid mixture, J. Chem. Phys. 121(13), 6456(2004)
https://doi.org/10.1063/1.1789951
20 M.Nagasaka, K.Mochizuki, V.Leloup , and N.Kosugi, Local structures of methanol-water binary solutions studied by soft X-ray absorption spectroscopy, J. Phys. Chem. B118(16), 4388(2014)
https://doi.org/10.1021/jp4091602
21 H.Schott, Hydration of primary alcohols, J. Chem. Eng. Data14(2), 237(1969)
https://doi.org/10.1021/je60041a004
22 Z. J.Derlacki, A. J.Easteal, A. V. J.Edge , L. A.Woolf, and Z. J. Roksandic, Diffusion coefficients of methanol and water and the mutual diffusion coefficient in methanol–water solutions at 278 and 298 K, J. Phys. Chem. 89(24), 5318(1985)
https://doi.org/10.1021/j100270a039
23 S. Z.Mikhailand W. R. Kimel, Densities and viscosities of methanol–water mixtures, J. Chem. Eng. Data6(4), 533(1961)
https://doi.org/10.1021/je60011a015
24 F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, and H. E.Stanley , Thermodynamic properties of bulk and confined water, J. Chem. Phys. 141, 18C504(2014)
25 R. S.Singh, J. W.Biddle, P. G.Debenedetti , and M. A.Anisimov , Two-state thermodynamics and the possibility of a liquid–liquid phase transition in supercooled TIP4P/2005 water, J. Chem. Phys. 144(14), 144504(2016)
https://doi.org/10.1063/1.4944986
26 Y.Niand J. L. Skinner, Evidence for a liquid–liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line, J. Chem. Phys. 144(21), 214501(2016)
https://doi.org/10.1063/1.4952991
27 F.Mallamace, C.Branca, C.Corsaro , N.Leone, J.Spooren, S. H.Chen , and H. E.Stanley , Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature, Proc. Natl. Acad. Sci. USA107(52), 22457(2010)
https://doi.org/10.1073/pnas.1015340107
28 F.Mallamace, C.Corsaro, H. E.Stanley , D.Mallamace, and S. H. Chen, The dynamical crossover in attractive colloidal systems, J. Chem. Phys. 139(21), 214502(2013)
https://doi.org/10.1063/1.4833595
29 F.Mallamace, C.Corsaro, and H. E.Stanley , A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep. 2, 993(2012)
https://doi.org/10.1038/srep00993
30 P.Gallo, K.Amann-Winkel, C. A.Angell , M. A.Anisimov, F.Caupin, C.Chakravarty , E.Lascaris, T.Loerting, A. Z.Panagiotopoulos , J.Russo, J. A.Sellberg, H. E.Stanley , H.Tanaka, C.Vega, L.Xu, and L. G. M.Pettersson, Water: A tale of two liquids, Chem. Rev. 116(13), 7463(2016)
https://doi.org/10.1021/acs.chemrev.5b00750
31 F.Mallamace, C.Corsaro, D.Mallamace , C.Vasi, and H. E. Stanley, The thermodynamical response functions and the origin of the anomalous behavior of liquid water, Faraday Discuss. 167, 95(2013)
https://doi.org/10.1039/c3fd00073g
32 L.Xu, P.Kumar, S. V.Buldyrev , S. H.Chen, P. H.Poole, F.Sciortino , and H. E.Stanley , Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition, Proc. Natl. Acad. Sci. USA102(46), 16558(2005)
https://doi.org/10.1073/pnas.0507870102
33 F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, P.Baglioni, S. V. Buldyrev, S. H.Chen , and H. E.Stanley , Energy landscape in protein folding and unfolding, Proc. Natl. Acad. Sci. USA113(12), 3159(2016)
https://doi.org/10.1073/pnas.1524864113
34 N.Bloembergen, E. M.Purcell, and R. V.Pound , Relaxation effects in nuclear magnetic resonance absorption, Phys. Rev.73(7), 679(1948)
https://doi.org/10.1103/PhysRev.73.679
35 W. R.Carper, Direct determination of quadrupolar and dipolar NMR correlation times from spin-lattice and spin–spin relaxation rates, Concepts in Magnetic Resonance Part A11(1), 51(1999)
https://doi.org/10.1002/(SICI)1099-0534(1999)11:1<51::AID-CMR3>3.0.CO;2-3
36 A.Yılmaz, M. Z. Köylü, and H.Budak, Estimation of τ value in proton NMR relaxation times of dibenzo diaza 18-crown-6 ether derivative in solution, Chem. Phys. Lett. 427(4–6), 346(2006)
https://doi.org/10.1016/j.cplett.2006.05.091
37 F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, and H. E. Stanley, NMR spectroscopy study of local correlations in water, J. Chem. Phys. 145(21), 214503(2016)
https://doi.org/10.1063/1.4968589
38 F.Mallamace,C.Corsaro, D.Mallamace , S.Vasi, S.-H.Chen, and H. E.Stanley (submitted)
39 S.Cerveny, F.Mallamace, J.Swenson , M.Vogel, and L.Xu, Confined water as model of supercooled water, Chem. Rev. 116(13), 7608(2016)
https://doi.org/10.1021/acs.chemrev.5b00609
Related articles from Frontiers Journals
[1] Margherita De Marzio, Gaia Camisasca, Mauro Rovere, Paola Gallo. Fragile to strong crossover and Widom line in supercooled water: A comparative study[J]. Front. Phys. , 2018, 13(1): 136103-.
[2] Domenico Mallamace, Sebastiano Vasi, Mauro Missori, Francesco Mallamace, Carmelo Corsaro. NMR investigation of degradation processes of ancient and modern paper at different hydration levels[J]. Front. Phys. , 2018, 13(1): 138202-.
[3] Francesco Mallamace,Carmelo Corsaro,Domenico Mallamace,Nicola Cicero,Sebastiano Vasi,Giacomo Dugo,H. Eugene Stanley. Dynamical changes in hydration water accompanying lysozyme thermal denaturation[J]. Front. Phys. , 2015, 10(5): 106104-.
[4] A. M. Mounce, S. Oh, W. P. Halperin. Nuclear magnetic resonance studies of vortices in high temperature superconductors[J]. Front. Phys. , 2011, 6(4): 450-462.
[5] Xin-hua PENG (彭新华), Dieter SUTER, . Spin qubits for quantum simulations [J]. Front. Phys. , 2010, 5(1): 1-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed