Frontiers of Materials Science


ISSN 2095-025X (Print)
ISSN 2095-0268 (Online)
CN 11-5985/TB
Postal Subscription Code 80-974
2019 Impact Factor: 1.747
Online First
The manuscripts published below will continue to be available from this page until they are assigned to an issue.
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries
Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI
Front. Mater. Sci.
Abstract   HTML   PDF (4497KB)

FeS2 has drawn tremendous attention as electrode material for sodium-ion batteries (SIBs) due to its high theoretical capacity and abundant resources. However, it suffers from severe volume expansion and dull reaction kinetics during the cycling process, leading to poor rate capacity and short cyclability. Herein, a well-designed FeS2@C/G composite constructed by FeS2 nanoparticles embedded in porous carbon nanorods (FeS2@C) and covered by three-dimensional (3D) graphene is reported. FeS2 nanoparticles can shorten the Na+ diffusion distance during the sodiation–desodiation process. Porous carbon nanorods and 3D graphene not only improve conductivity but also provide double protection to alleviate the volume variation of FeS2 during cycling. Consequently, FeS2@C/G exhibits excellent cyclability (83.3% capacity retention after 300 cycles at 0.5 A·g−1 with a capacity of 615.1 mA·h·g−1) and high rate capacity (475.1 mA·h·g−1 at 5 A·g−1 after 2000 cycles). The pseudocapacitive process is evaluated and confirmed to significantly contribute to the high rate capacity of FeS2@C/G.

Table and Figures | Reference | Related Articles | Metrics
Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium–sulfur batteries
Yuming CHEN, Wenhao TANG, Jingru MA, Ben GE, Xiangliang WANG, Yufen WANG, Pengfei REN, Ruiping LIU
Front. Mater. Sci.
Abstract   HTML   PDF (1574KB)

Lithium–sulfur batteries are considered to be one of the strong competitors to replace lithium-ion batteries due to their large energy density. However, the dissolution of discharge intermediate products to the electrolyte, the volume change and poor electric conductivity of sulfur greatly limit their further commercialization. Herein, we proposed a self-supporting cathode of nickel-decorated TiO2 nanotube arrays (TiO2 NTs@Ni) prepared by an anodization and electrodeposition method. The TiO2 NTs with large specific surface area provide abundant reaction space and fast transmission channels for ions and electrons. Moreover, the introduction of nickel can enhance the electric conductivity and the polysulfide adsorption ability of the cathode. As a result, the TiO2 NTs@Ni–S electrode exhibits significant improvement in cycling and rate performance over TiO2 NTs, and the discharge capacity of the cathode maintains 719 mA·h·g−1 after 100 cycles at 0.1 C.

Table and Figures | Reference | Related Articles | Metrics
First page | Prev page | Next page | Last page Page 1 of 1, 2 articles found