Please wait a minute...

Frontiers of Materials Science

Front Mater Sci    2013, Vol. 7 Issue (1) : 83-90     DOI: 10.1007/s11706-013-0192-x
Circular dichroism of graphene oxide: the chiral structure model
Jing CAO1,2, Hua-Jie YIN2, Rui SONG1()
1. College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 2. Laboratory of Nanomaterials, National Center for Nanoscience and Technology, Beijing 100190, China
Download: PDF(691 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

We have observed the circular dichroism signal of dilute graphene oxide (GO), then systematically investigated the chirality of GO and established a probable chiral unit model. This study may open up a new field for understanding the structure of GO and lay the foundation for fabrication of GO-based materials.

Keywords graphene oxide (GO)      circular dichroism      XPS      chiral model     
Corresponding Authors: SONG Rui,   
Issue Date: 05 March 2013
 Cite this article:   
Jing CAO,Hua-Jie YIN,Rui SONG. Circular dichroism of graphene oxide: the chiral structure model[J]. Front Mater Sci, 2013, 7(1): 83-90.
E-mail this article
E-mail Alert
Articles by authors
Jing CAO
Hua-Jie YIN
Fig.1  Typical TEM images of HGO, TGO, rHGO, and rTGO.
Fig.2  UV–Vis and CD absorption spectra of HGO and TGO in aqueous at room temperature with the concentration of about 20 μg/mL.
Fig.3  Typical XPS spectra of HGO and TGO.
Fig.4  CD spectra of HGO and rHGO and TGO and rTGO in aqueous at room temperature.
Fig.5  CD spectra of HGO in aqueous with different NaCl concentrations at room temperature.
Fig.6  Images represent possible synthesis route of graphene oxide. The blue ball C, and the red ball O.
Fig.7  Schematic illustrations of and . The ball-stick models illustrate the structures, the blue ball C, the red ball O, and the white ball H.
Fig.8  Schematic illustrations of and . The ball-stick models illustrate the structures, the blue ball C, the red ball O, and the white ball H.
Fig.9  Schematic diagram of HGO, TGO, and rHGO. The blue ball means the chiral unit and the red ball means the other chiral unit .
Fig.10  Schematic diagram of HGO without NaCl and HGO with the concentration of NaCl of 1 × 10 mol/L. The blue ball means the chiral unitand the red ball means the other chiral unit .
1 Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society , 1958, 80(6): 1339
2 Gao W, Alemany L B, Ci L J, . New insights into the structure and reduction of graphite oxide. Nature Chemistry , 2009, 1(5): 403-408
3 Marcano D C, Kosynkin D V, Berlin J M, . Improved synthesis of graphene oxide. ACS Nano , 2010, 4(8): 4806-4814
4 Kim J, Cote L J, Huang J X. Two dimensional soft material: new faces of graphene oxide. Accounts of Chemical Research , 2012, 45(8): 1356-1364
5 Li D, Müller M B, Gilje S, . Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology , 2008, 3(2): 101-105
6 Nair R R, Wu H A, Jayaram P N, . Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science , 2012, 335(6067): 442-444
7 Wei Z Q, Wang D B, Kim S, . Nanoscale tunable reduction of graphene oxide for graphene electronics. Science , 2010, 328(5984): 1373-1376
8 Dikin D A, Stankovich S, Zimney E J, . Preparation and characterization of graphene oxide paper. Nature , 2007, 448(7152): 457-460
9 Dreyer D R, Park S, Bielawski C W, . The chemistry of graphene oxide. Chemical Society Reviews , 2010, 39(1): 228-240
10 Kim J, Cote L J, Kim F, . Graphene oxide sheets at interfaces. Journal of the American Chemical Society , 2010, 132(23): 8180-8186
11 Hamley I W. Introduction to Soft Matter: Polymers, Colloids, Amphiphiles and Liquid Crystals. New York: Wiley, 2000
12 Lerf A, He H Y, Forster M, . Structure of graphite oxide revisited. Journal of Physical Chemistry B , 1998, 102(23): 4477-4482
13 Szabó T, Berkesi O, Forgó P, . Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chemistry of Materials , 2006, 18(11): 2740-2749
14 Cai W W, Piner R D, Stadermann F J, . Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science , 2008, 321(5897): 1815-1817
15 Casabianca L B, Shaibat M A, Cai W W, . NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations. Journal of the American Chemical Society , 2010, 132(16): 5672-5676
16 Erickson K, Erni R, Lee Z, . Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Advanced Materials , 2010, 22(40): 4467-4472
17 Johari P, Shenoy V B. Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano , 2011, 5(9): 7640-7647
18 Hossain M Z, Johns J E, Bevan K H, . Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nature Chemistry , 2012, 4(4): 305-309
19 Wei W L, Qu K G, Ren J S, . Chiral detection using reusable fluorescent amylose-functionalized graphene. Chemical Science , 2011, 2(10): 2050-2056
20 Fan Z, Govorov A O. Chiral nanocrystals: plasmonic spectra and circular dichroism. Nano Letters , 2012, 12(6): 3283-3289
21 Greenfield N J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nature Protocols , 2006, 1(6): 2527-2535
22 Hazen R M, Sholl D S. Chiral selection on inorganic crystalline surfaces. Nature Materials , 2003, 2(6): 367-374
23 Micali N, Engelkamp H, van Rhee P G, . Selection of supramolecular chirality by application of rotational and magnetic forces. Nature Chemistry , 2012, 4(3): 201-207
24 Xu Z, Gao C. Aqueous liquid crystals of graphene oxide. ACS Nano , 2011, 5(4): 2908-2915
25 Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nature Communications , 2011, 2: 571
26 Zhu Y, James D K, Tour J M. New routes to graphene, graphene oxide and their related applications. Advanced Materials , 2012, 24(36): 4924-4955
27 Paul D R. Marerials science. Creating new types of carbon-based membranes. Science , 2012, 335(6067): 413-414
28 Yin H J, Tang H J, Wang D, . Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano , 2012, 6(9): 8288-8297
29 Dimiev A, Kosynkin D V, Alemany L B, . Pristine graphite oxide. Journal of the American Chemical Society , 2012, 134(5): 2815-2822
30 Loh K P, Bao Q, Eda G, . Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry , 2010, 2(12): 1015-1024
Related articles from Frontiers Journals
[1] Xiang XIA,Xiangping JIANG,Chao CHEN,Xingan JIANG,Na TU,Yunjing CHEN. Effects of Cr2O3 doping on the microstructure and electrical properties of (Ba,Ca)(Zr,Ti)O3 lead-free ceramics[J]. Front. Mater. Sci., 2016, 10(2): 203-210.
[2] Zhi-Qin YAN,Wei ZHANG. The development of graphene-based devices for cell biology research[J]. Front. Mater. Sci., 2014, 8(2): 107-122.
Full text