Please wait a minute...

Frontiers of Materials Science

Front Mater Sci    2011, Vol. 5 Issue (1) : 1-24     DOI: 10.1007/s11706-011-0100-1
REVIEW ARTICLE |
Shaped gold and silver nanoparticles
Yugang SUN1(), Changhua AN2
1. Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Avenue, Argonne, IL 60439, USA; 2. State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266555, China
Download: PDF(1343 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Advance in the synthesis of shaped nanoparticles made of gold and silver is reviewed in this article. This review starts with a new angle by analyzing the relationship between the geometrical symmetry of a nanoparticle shape and its internal crystalline structures. According to the relationship, the nanoparticles with well-defined shapes are classified into three categories: nanoparticles with single crystallinity, nanoparticles with angular twins, and nanoparticles with parallel twins. Discussion and analysis on the classical methods for the synthesis of shaped nanoparticles in each category are also included and personal perspectives on the future research directions in the synthesis of shaped metal nanoparticles are briefly summarized. This review is expected to provide a guideline in designing the strategy for the synthesis of shaped nanoparticles and analyzing the corresponding growth mechanism.

Keywords shaped nanoparticles      geometric symmetry      internal crystalline structure      multiple twins      gold      silver     
Corresponding Authors: SUN Yugang,Email:ygsun@anl.gov   
Issue Date: 05 March 2011
 Cite this article:   
Yugang SUN,Changhua AN. Shaped gold and silver nanoparticles[J]. Front Mater Sci, 2011, 5(1): 1-24.
 URL:  
http://journal.hep.com.cn/foms/EN/10.1007/s11706-011-0100-1
http://journal.hep.com.cn/foms/EN/Y2011/V5/I1/1
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yugang SUN
Changhua AN
Fig.1  A unit cell of the face-centered cubic (fcc) structure. The lattice has four axes and three axes that are highlighted with blue and green dashed lines, respectively. Each plane highlighted in yellow has a principal rotation axis perpendicular to it. This class of planes do not share their axes since the planes are shifted relative to one another. Each unit cell contains four such planes that construct a regular tetrahedron (highlighted as yellow planes and red dotted lines).
Particle morphologySymmetry elementPoint group
2-fold axis (L2)3-fold axis (L3)4-fold axis (L4)5-fold axis (L5)6-fold axis (L6)Reflection plane (P)Inversion center (C)
Single crystal without twins6430091Oh
3400060Td
With angular twins1510060150Ih
5001060D5h
5001060D5h
With parallel twin3100040D3h
6100171D6h
11111D∞h
2000031C2v
Tab.1  Typical shapes of nanoparticles and their geometric symmetries
Fig.2  SEM and TEM images of the Ag nanocubes synthesized through a polyol process. The inset of (b) represents an electron diffraction pattern obtained from an individual nanocube by aligning the electron beam perpendicular to one of its six surfaces. (Reproduced with permission from Ref. [], Copyright 2002 American Association for the Advancement of Science) SEM and TEM images of the Ag nanobars synthesized through a polyol process similar to that of the synthesis of Ag nanocubes ((a) and (b)) except for the introduction of additives, such as NaBr. The inset of (d) is a convergent beam electron diffraction pattern obtained from a portion of an individual nanobar highlighted by a circle by aligning the electron beam perpendicular to one of its four rectangular surfaces. (Reproduced with permission from Ref. [], Copyright 2007 American Chemical Society)
Fig.3  Schematic illustration of the morphological evolution during the overgrowth of Ag nanocubes by continuous deposition of Ag atoms on the Ag nanocubes via polyol reduction of AgNO in 1,5-pentanediol with the assistance of PVP. SEM image of the Ag nanocubes and SEM images of the nanoparticles formed after overgrowth of the Ag nanocubes. The scale in (f) applies to (b), (c), (d), and (e). (Reproduced with permission from Ref. [], Copyright 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Fig.4  SEM image of Ag tetrahedral nanoparticles synthesized through a photochemical transformation process. The image was taken by tilting the stage by 45°. TEM image of an individual Ag nanotetrahedron by aligning the electron beam perpendicular to one of its four surfaces. The inset of (b) represents the corresponding electron diffraction pattern. (Reproduced with permission from Ref. [], Copyright 2008 American Chemical Society)
Fig.5  TEM image of Ag icosahedral nanoparticles synthesized through reduction of AgNO with 1,2-hexadecanediol in 4--butyl toluene at 200°C. HRTEM images of individual Ag nanoicosahedrons by aligning the electron beam along different orientations: (b) along the symmetry axis; (c) along the symmetry axis; (d) along the symmetry axis. Insets in the upper right corners and the bottom right corners represent the FFT patterns of the corresponding HRTEM images and the schematic illustrations of the icosahedrons in different orientations, respectively. (Reproduced with permission from Ref. [], Copyright 2009 American Chemical Society)
Fig.6  TEM image of decahedral nanoparticles made of Au synthesized through a sonication-induced reduction of HAuCl in -dimethylformamide (DMF) in the presence of PVP and Au seeds with sizes of 2-3 nm. HRTEM image taken from the center of a Au nanodecahedron shown in (a) by aligning the electron beam parallel to the symmetry axis (i.e., the common axis of the five single crystalline subunits). (Reproduced with permission from Ref. [], Copyright 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) TEM image of Ag nanodecahdrons synthesized through a photochemical transformation of small silver nanoparticles. (Reproduced with permission from Ref. [], Copyright 2008 American Chemical Society)
Fig.7  Schematic illustration of the growth mechanism of a Ag nanorod/nanowire from a Ag nanodecahedron with the assistance of surfactants. TEM images of Ag nanorods with different lengths synthesized through a seed-mediated polyol process by using the uniform Ag nanodecahedrons as shown in Fig. 6(c) as seeds. SEM image of Ag nanowires synthesized through a self-seeding polyol process. Selected area electron diffraction pattern taken from an individual nanowire shown in (d) by directing the electron beam perpendicular to one of its five side surfaces. ((a), (d), and (e): reproduced with permission from Ref. [], Copyright 2003 American Chemical Society; (b) and (c): reproduced with permission from Ref. [], Copyright 2009 American Chemical Society)
Fig.8  TEM image of Ag triangular nanoplates with average edge length of (120±14) nm synthesized through a photochemical transformation of small Ag nanoparticles under illumination of a primary laser with wavelength of 750 nm and a secondary laser with wavelength of 340 nm. Typical electron diffraction pattern taken from an individual Ag triangular nanoplate by aligning the electron beam perpendicular to its basal surfaces. HRTEM image of an Ag nanoplate by aligning the electron beam parallel to its basal surfaces, i.e., along the ?110? zone axis. The noncontinuous lattice fringes indicate the existence of twin boundaries that are parallel to the basal surfaces of the nanoplate. (Reproduced with permission from Ref. [], Copyright 2003 Nature Publishing Group) TEM image of Ag hexagonal nanoplates through a photochemical conversion of small Ag nanoparticles. (Reproduced with permission from Ref. [], Copyright 2007 American Chemical Society) TEM image of the Ag circular nanoplates (i.e., nanodisks) prepared by exposing Ag triangular nanoplates under UV light. (Reproduced with permission from Ref. [], Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Fig.9  SEM, TEM, and HRTEM images of Ag nanobelts synthesized through reduction of AgNO with ascorbic acid in an aqueous solution of PAA at low temperature of 4°C. (Reproduced with permission from Ref. [], Copyright 2007 American Chemical Society)
1 Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition , 2005, 44(48): 7852–7872
doi: 10.1002/anie.200500766
2 Lopez-Acevedo O, Kacprzak K A, Akola J, . Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nature Chemistry , 2010, 2(4): 329–334
doi: 10.1038/nchem.589
3 Fendler J H. Chemical self-assembly for electronic applications. Chemistry of Materials , 2001, 13(10): 3196–3210
doi: 10.1021/cm010165m
4 Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science , 2006, 311(5758): 189–193
doi: 10.1126/science.1114849
5 Maier S A, Brongersma M L, Kik P G, . Plasmonics - a route to nanoscale optical devices. Advanced Materials , 2001, 13(19): 1501–1505
doi: 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
6 Kamat, P V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. The Journal of Physical Chemistry B , 2002, 106(32): 7729–7744
doi: 10.1021/jp0209289
7 Murray C B, Sun S, Doyle H, . Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bulletin , 2001, 26(12): 985–991
8 Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science , 1997, 275(5303): 1102–1106
doi: 10.1126/science.275.5303.1102
9 Dick, L A, McFarland A D, Haynes C L, . Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. The Journal of Physical Chemistry B , 2001, 106(4): 853–860
doi: 10.1021/jp013638l
10 Li J F, Huang Y F, Ding Y, . Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature , 2010, 464(7287): 392–395
doi: 10.1038/nature08907
11 Panyala N R, Pena-Mendez E M, Havel J. Gold and nano-gold in medicine: overview, toxicology and perspectives. Journal of Applied Biomedicine , 2009, 7(2): 75–91
12 Giljohann D A, Seferos D S, Daniel L, . Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition , 2010, 49(19): 3280–3294
13 Brown C L, Bushell G, Whitehouse M W, . Nanogold-pharmaceutics (i) The use of colloidal gold to treat experimentally-induced arthritis in rat models; (ii) Characterization of the gold in Swarna bhasma, a microparticulate used in traditional Indian medicine. Gold Bulletin , 2007, 40(3): 245–250
14 Xu R, Wang D, Zhang J, . Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chemistry - An Asian Journal , 2006, 1(6): 888–893
doi: 10.1002/asia.200600260
15 Tian N, Zhou Z, Sun S, . Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science , 2007, 316(5825): 732–735
doi: 10.1126/science.1140484
16 Kelly K L, Coronado E, Zhao L L, . The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B , 2002, 107(3): 668–677
doi: 10.1021/jp026731y
17 Millstone J E, Métraux G S, Mirkin C A. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Advanced Functional Materials , 2006, 16(9): 1209–1214
doi: 10.1002/adfm.200600066
18 Metraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials , 2005, 17(4): 412–415
doi: 10.1002/adma.200401086
19 Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways. Angewandte Chemie International Edition , 2007, 46(12): 2036–2038
doi: 10.1002/anie.200604637
20 Shuford K L, Ratner M A, Schatz G C. Multipolar excitation in triangular nanoprisms. The Journal of Chemical Physics , 2005, 123(11): 114713 (9 pages)
21 Liang H, Wang W, Huang Y, . Controlled synthesis of uniform silver nanospheres. The Journal of Physical Chemistry C , 2010, 114(16): 7427–7431
doi: 10.1021/jp9105713
22 Sun Y G, Xia Y N. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst , 2003, 128(6): 686–691
doi: 10.1039/b212437h
23 Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews , 2006, 35(3): 209–217
doi: 10.1039/b514191e
24 Xia Y, Xiong Y, Lim B, . Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition , 2009, 48(1): 60–103
doi: 10.1002/anie.200802248
25 Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small , 2008, 4(3): 310–325
doi: 10.1002/smll.200701295
26 Sau T K, Rogach A L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Advanced Materials , 2010, 22(16): 1781–1804
doi: 10.1002/adma.200901271
27 Grzelczak M, Pérez-Juste J, Mulvaney P, . Shape control in gold nanoparticle synthesis. Chemical Society Reviews , 2008, 37(9): 1783–1791
doi: 10.1039/b711490g
28 Millstone J E, Hurst S J, Metraux G S, . Colloidal gold and silver triangular nanoprisms. Small , 2009, 5(6): 646–664
doi: 10.1002/smll.200801480
29 Hao E, Schatz G C, Electromagnetic fields around silver nanoparticles and dimers. The Journal of Chemical Physics , 2004, 120(1): 357–366
doi: 10.1063/1.1629280
30 Hao E, Schatz G C, Hupp J T. Synthesis and optical properties of anisotropic metal nanoparticles. Journal of Fluorescence , 2004, 14(4): 331–341
doi: 10.1023/B:JOFL.0000031815.71450.74
31 Jain P K, Lee K S, El-Sayed I H, . Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B , 2006, 110(14): 7238–7248
doi: 10.1021/jp057170o
32 Huang X, El-Sayed I H, Qian W, . Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society , 2006, 128(6): 2115–2120
doi: 10.1021/ja057254a
33 Ding H, Yong K-T, Roy I, . Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. The Journal of Physical Chemistry C , 2007, 111(34): 12552–12557
doi: 10.1021/jp0733419
34 Oyelere A K, Chen P C, Huang X, . Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chemistry , 2007, 18(5): 1490–1497
doi: 10.1021/bc070132i
35 Oldenburg A L, Hansen M N, Zweifel D A, . Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optical Express , 2006, 14(15): 6724–6738
doi: 10.1364/OE.14.006724
36 Huang X, Neretina S, El-Sayed M A. Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials , 2009, 21(48): 4880–4910
doi: 10.1002/adma.200802789
37 Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society , 2005, 127(20): 7632–7637
doi: 10.1021/ja042192u
38 Qin P, Linder M, Brinck T, . High incident photon-to-current conversion efficiency of p-type dye-sensitized solar sells based on NiO and organic chromophores. Advanced Materials , 2009, 21(29): 2993–2996
doi: 10.1002/adma.200802461
39 Kelzenberg M D, Boettcher S W, Petykiewicz J A, . Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials , 2010, 9(3): 239–244
40 Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials , 2010, 9(3): 205–213
doi: 10.1038/nmat2629
41 Kulkarni A P, Noone K M, Munechika K, . Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Letters , 2010, 10(4): 1501–1505
doi: 10.1021/nl100615e
42 Dickson R M, Lyon L A. Unidirectional plasmon propagation in metallic nanowires. The Journal of Physical Chemistry B , 2000, 104(26): 6095–6098
doi: 10.1021/jp001435b
43 Sanders A W, Routenberg D A, Wiley B J, . Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Letters , 2006, 6(8): 1822–1826
doi: 10.1021/nl052471v
44 Knight M W, Grady N K, Bardhan R, . Nanoparticle-mediated coupling of light into a nanowire. Nano Letters , 2007, 7(8): 2346–2350
doi: 10.1021/nl071001t
45 Guo X, Qiu M, Bao J, . Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Letters , 2009, 9(12): 4515–4519
doi: 10.1021/nl902860d
46 Akimov A V, Mukherjee A, Yu C L, . Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature , 2007, 450(7168): 402–406
doi: 10.1038/nature06230
47 Noginov M A, Zhu G, Mayy M, . Stimulated emission of surface plasmon polaritons. Physical Review Letters , 2008, 101(22): 226806 (4 pages)
48 Yan R, Pausauskie P, Huang J, . Direct photonic-plasmonic coupling and routing in single nanowires. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106(50): 21045–21050
doi: 10.1073/pnas.0902064106
49 Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science , 2002, 298(5601): 2176–2179
doi: 10.1126/science.1077229
50 Zhang Q, Cobley C, Au L, . Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Applied Materials & Interfaces , 2009, 1(9): 2044–2048
doi: 10.1021/am900400a
51 Zeng J, Zheng Y, Rycenga M, . Controlling the shapes of silver nanocrystals with different capping agents. Journal of the American Chemical Society , 2010, 132(25): 8552–8553
doi: 10.1021/ja103655f
52 Kim F, Connor S, Song H, . Platonic gold nanocrystals. Angewandte Chemie International Edition , 2004, 43(28): 3673–3677
doi: 10.1002/anie.200454216
53 Kundu S, Maheshwari V, Niu S, . Polyelectrolyte mediated scalable synthesis of highly stable silver nanocubes in less than a minute using microwave irradiation. Nanotechnology , 2008, 19(6): 065604 (5 pages)
54 Huang C-J, Wang Y-H, Chiu P-H, . Electrochemical synthesis of gold nanocubes. Materials Letters , 2006, 60(15): 1896–1900
doi: 10.1016/j.matlet.2005.12.045
55 Zhang Q, Huang C Z, Ling J, . Silver nanocubes formed on ATP-mediated nafion film and a visual method for formaldehyde. The Journal of Physical Chemistry B , 2008, 112(51): 16990–16994
doi: 10.1021/jp8081535
56 Zhu J J, Kan C X, Zhu X G G, . Synthesis of perfect silver nanocubes by a simple polyol process. Jouranl of Materials Research , 2007, 22(6): 1479–1485
doi: 10.1557/jmr.2007.0222
57 Habas S E, Lee H, Radmilovic V, . Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials , 2007, 6(9): 692–697
doi: 10.1038/nmat1957
58 Fan F R, Liu D Y, Wu Y F, . Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society , 2008, 130(22): 6949–6951
doi: 10.1021/ja801566d
59 Li C C, Shuford K L, Chen M H, . A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano , 2008, 2(9): 1760–1769
doi: 10.1021/nn800264q
60 Li C C, Shuford K L, Park Q H, . High-yield synthesis of single-crystalline gold nano-octahedra. Angewandte Chemie International Edition , 2007, 46(18): 3264–3268
doi: 10.1002/anie.200604167
61 Song S, Liu R, Zhang Y, . Colloidal noble-metal and bimetallic alloy nanocrystals: A general synthetic method and their catalytic hydrogenation properties. Chemistry - A European Journal , 2010, 16(21): 6251–6256
doi: 10.1002/chem.200903279
62 Seo D, Park J C, Song H. Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. Journal of the American Chemical Society , 2006, 128(46): 14863–14870
doi: 10.1021/ja062892u
63 Zhou J, An J, Tang B, . Growth of tetrahedral silver nanocrystals in aqueous solution and their SERS enhancement. Langmuir , 2008, 24(18): 10407–10413
doi: 10.1021/la800961j
64 Tsuji M, Ogino M, Matsuo R, . Stepwise growth of decahedral and icosahedral silver nanocrystals in DMF. Crystal Growth & Design , 2010, 10(1): 296–301
doi: 10.1021/cg9009042
65 Zheng X L, Zhao X J, Guo D W, . Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength. Langmuir , 2009, 25(6): 3802–3807
doi: 10.1021/la803814j
66 Zhang W, Liu Y, Cao R, . Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals. Journal of the American Chemical Society , 2008, 130(46): 15581–15588
doi: 10.1021/ja805606q
67 Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chemistry of Materials , 2008, 20(16): 5186–5190
doi: 10.1021/cm800926u
68 Pastoriza-Santos I, Sanchez-Iglesias A, de Abajo F J G, . Environmental optical sensitivity of gold nanodecahedra. Advanced Functional Materials , 2007, 17(9): 1443–1450
doi: 10.1002/adfm.200601071
69 Murphy C J, Gole A M, Hunyadi S E, . One-dimensional colloidal gold and silver nanostructures. Inorganic Chemistry , 2006, 45(19): 7544–7554
doi: 10.1021/ic0519382
70 Murphy C J, Sau T K, Gole A M, . Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. The Journal of Physical Chemistry B , 2005, 109(29): 13857–13870
doi: 10.1021/jp0516846
71 Tao A, Kim F, Hess C, . Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Letters , 2003, 3(9): 1229–1233
doi: 10.1021/nl0344209
72 Sun Y, Mayers B, Herricks T, . Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters , 2003, 3(7): 955–960
doi: 10.1021/nl034312m
73 Sun Y, Gates B, Mayers B, . Crystalline silver nanowires by soft solution processing. Nano Letters , 2002, 2(2): 165–168
doi: 10.1021/nl010093y
74 Ni K, Chen L, Lu G X. Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction. Electrochemistry Communication , 2008, 10(7): 1027–1030
doi: 10.1016/j.elecom.2008.03.015
75 N’Gom M, Ringnalda J, Mansfield J F, . Single particle plasmon spectroscopy of silver nanowires and gold nanorods. Nano Letters , 2008, 8(10): 3200–3204
doi: 10.1021/nl801504v
76 Tang X, Tsuji M, Jiang P, . Rapid and high-yield synthesis of silver nanowires using air-assisted polyol method with chloride ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 338(1-3): 33–39
doi: 10.1016/j.colsurfa.2008.12.029
77 Wiley B J, Wang Z, Wei J, . Synthesis and electrical characterization of silver nanobeams. Nano Letters , 2006, 6(10): 2273–2278
doi: 10.1021/nl061705n
78 Xue C, Metraux G S, Millstone J E, . Mechanistic study of photomediated triangular silver nanoprism growth. Journal of the American Chemical Society , 2008, 130(26): 8337–8344
doi: 10.1021/ja8005258
79 Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters , 2002, 2(9): 1003–1007
doi: 10.1021/nl025674h
80 Chen S, Fan Z, Carroll D L. Silver nanodisks: synthesis, characterization, and self-assembly. The Journal of Physical Chemistry B , 2002, 106(42): 10777–10781
doi: 10.1021/jp026376b
81 Jin R C, Cao Y W, Mirkin C A, . Photoinduced conversion of silver nanospheres to nanoprisms. Science , 2001, 294(5548): 1901–1903
doi: 10.1126/science.1066541
82 Washio I, Xiong Y, Yin Y, . Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials , 2006, 18(13): 1745–1749
doi: 10.1002/adma.200600675
83 Xiong Y, Washio I, Chen J, . Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir , 2006, 22(20): 8563–8570
doi: 10.1021/la061323x
84 Lim B, Camargo P H C, Xia Y. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone). Langmuir , 2008, 24(18): 10437–10442
doi: 10.1021/la801803z
85 Xiong Y J, Siekkinen A R, Wang J G, . Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry , 2007, 17(25): 2600–2602
doi: 10.1039/b705253g
86 Cao Z W, Fu H B, Kang L T, . Rapid room-temperature synthesis of silver nanoplates with tunable in-plane surface plasmon resonance from visible to near-IR. Journal of Materials Chemistry , 2008, 18(23): 2673–2678
doi: 10.1039/b800691a
87 Zhao N, Wei Y, Sun N, . Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir , 2008, 24(3): 991–998
doi: 10.1021/la702848x
88 Li L, Wang Z, Huang T, . Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir , 2010, 26(14): 12330–12335
doi: 10.1021/la1015737
89 Bai J, Qin Y, Jiang C, . Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns. Chemistry of Materials , 2007, 19(14): 3367–3369
doi: 10.1021/cm0707861
90 Singh A, Ghosh A. Stabilizing high-energy crystal structure in silver nanowires with underpotential electrochemistry. The Journal of Physical Chemistry C , 2008, 112(10): 3460–3463
doi: 10.1021/jp7117967
91 Im S H, Lee Y T, Wiley B, . Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angewandte Chemie International Edition , 2005, 44(14): 2154–2157
doi: 10.1002/anie.200462208
92 Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie International Edition , 2006, 45(28): 4597–4601
doi: 10.1002/anie.200601277
93 Wiley B, Herricks T, Sun Y, . Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Letters , 2004, 4(9): 1733–1739
doi: 10.1021/nl048912c
94 Yu D, Yam V W-W. Controlled synthesis of monodisperse silver nanocubes in water. Journal of the Amercian Chemical Society , 2004, 126(41): 13200–13201
doi: 10.1021/ja046037r
95 Skrabalak S E, Au L, Li X, . Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols , 2007, 2(9): 2182–2190
doi: 10.1038/nprot.2007.326
96 Siekkinen A R, McLellan J M, . Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chemical Physics Letters , 2006, 432(4-6): 491–496
doi: 10.1016/j.cplett.2006.10.095
97 Wiley B J, Chen Y C, McLellan J M, . Synthesis and optical properties of silver nanobars and nanorice. Nano Letters , 2007, 7(4): 1032–1036
doi: 10.1021/nl070214f
98 Mulvihill M J, Ling X Y, Henzie J, . Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. Journal of the American Chemical Society , 2009, 132(1): 268–274
doi: 10.1021/ja906954f
99 Wu X, Redmond P L, Liu H, . Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. Journal of the American Chemical Society , 2008, 130(29): 9500–9506
doi: 10.1021/ja8018669
100 Mackay A L. A dense non-crystalloraphic packing of equal spheres. Acta Crystallography , 1962, 15: 916–918
doi: 10.1107/S0365110X6200239X
101 Zhang Q, Xie J, Yang J, . Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation. ACS Nano , 2009, 3(1): 139–148
doi: 10.1021/nn800531q
102 Peng S, McMahon J M, Schatz G C, . Reversing the size-dependence of surface plasmon resonances. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(33): 14530–14534
doi: 10.1073/pnas.1007524107
103 Xu J, Li S, Weng J, . Hydrothermal syntheses of gold nanocrystals: from icosahedral to its truncated form. Advanced Functional Materials , 2008, 18(2): 277–284
doi: 10.1002/adfm.200700123
104 Lu X, Tuan H-Y, Korgel B A, . Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chemistry - A European Journal , 2008, 14(5): 1584–1591
doi: 10.1002/chem.200701570
105 Yavuz M S, Li W, Xia Y. Facile synthesis of gold icosahedra in an aqueous solution by reacting HAuCl4 with N-vinyl pyrrolidone. Chemistry - A European Journal , 2009, 15(47): 13181–13187
doi: 10.1002/chem.200901440
106 Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, . Synthesis and optical properties of gold nanodecahedra with size control. Advanced Materials , 2006, 18(19): 2529–2534
doi: 10.1002/adma.200600475
107 Gao Y, Jiang P, Song L, . Studies on silver nanodecahedrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction. Journal of Crystal Growth , 2006, 289(1): 376–380
doi: 10.1016/j.jcrysgro.2005.11.123
108 Zheng X, Xu W, Corredor C, . Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. The Journal of Physical Chemistry C , 2007, 111(41): 14962–14967
doi: 10.1021/jp074583b
109 Stamplecoskie K G, Scaiano J C. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. Journal of the American Chemical Society , 2010, 132(6): 1825–1827
doi: 10.1021/ja910010b
110 Gao Y, Jiang P, Liu D F, . Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires. The Journal of Physical Chemistry B , 2004, 108(34): 12877–12881
doi: 10.1021/jp037116c
111 Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications , 2001, (7): 617–618
doi: 10.1039/b100521i
112 Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials , 2002, 14(1): 80–82
doi: 10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#
113 Lucas M, Leach A M, McDowell M T, . Plastic deformation of pentagonal silver nanowires: Comparison between AFM nanoindentation and atomistic simulations. Physical Reviews B , 2008, 77(24): 245420 (4 pages)
114 Ni C, Hassan P A, Kaler E W. Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir , 2005, 21(8): 3334–3337
doi: 10.1021/la046807c
115 Zhang S, Jiang Z, Xie Z, . Growth of silver nanowires from solutions: a cyclic penta-twinned-crystal growth mechanism. The Journal of Physical Chemistry B , 2005, 109(19): 9416–9421
doi: 10.1021/jp0441036
116 Kim S H, Choi B S, Kang K, . Low temperature synthesis and growth mechanism of Ag nanowires. Journal of Alloys and Compounds , 2007, 433(1-2): 261–264
doi: 10.1016/j.jallcom.2006.06.053
117 Zheng X, Zhu L, Yan A, . Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions. Journal of Colloid & Interface Science , 2003, 268(2): 357–361
doi: 10.1016/j.jcis.2003.09.021
118 Zhou G, Lu M, Yang Z, . Surfactant-assisted synthesis and characterization of silver nanorods and nanowires by an aqueous solution approach. Journal of Crystal Growth , 2006, 289(1): 255–259
doi: 10.1016/j.jcrysgro.2005.11.106
119 Pietrobon B, McEachran M, Kitaev V. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano , 2009, 3(1): 21–26
doi: 10.1021/nn800591y
120 Seo D, Yoo C I, Jung J, . Ag-Au-Ag heterometallic nanords formed through directed anisotropic growth. Journal of the American Chemical Society , 2008, 130(10): 2940–2941
doi: 10.1021/ja711093j
121 Sun Y, Xia Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding polyol process. Advacned Materials , 2002, 14(11): 833–837
doi: 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K
122 Sun Y, Yin Y, Mayers B T, . Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chemistry of Materials , 2002, 14(11): 4736–4745
doi: 10.1021/cm020587b
123 Jin R, Charles Cao Y, Hao E, . Controlling anisotropic nanoparticle growth through plasmon excitation. Nature , 2003, 425(6957): 487–490
doi: 10.1038/nature02020
124 An J, Tang B: Ning X, . Photoinduced shape evolution: from triangular to hexagonal silver nanoplates. The Journal of Physical Chemistry C , 2007, 111(49): 18055–18059
doi: 10.1021/jp0745081
125 Zhang Q, Ge J, Pham T, . Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability. Angewandte Chemie International Edition , 2009, 48(19): 3516–3519
doi: 10.1002/anie.200900545
126 Maillard M, Giorgio S, Pileni M P. Silver nanodisks. Advanced Materials , 2002, 14(15): 1084–1086
doi: 10.1002/1521-4095(20020805)14:15<1084::AID-ADMA1084>3.0.CO;2-L
127 Yener D O, Sindel J, Randall C A, . Synthesis of nanosized silver platelets in octylamine-water bilayer systems. Langmuir , 2002, 18(22): 8692–8699
doi: 10.1021/la011229a
128 Pastoriza-Santos I, Liz-Marzan L M. Synthesis of silver nanoprisms in DMF. Nano Letters , 2002, 2(8): 903–905
doi: 10.1021/nl025638i
129 Pastoriza-Santos I, Liz-Marzán L M. N,N-Dimethylformamide as a reaction medium for metal nanoparticle synthesis. Advanced Functioanl Materials , 2009, 19(5): 679–688
doi: 10.1002/adfm.200801566
130 Malikova N, Pastoriza-Santos I, Schierhorn M, . Layer-by-layer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions. Langmuir , 2002, 18(9): 3694–3697
doi: 10.1021/la025563y
131 Millstone J E, Park S, Shuford K L, . Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. Journal of the American Chemical Society , 2005, 127(15): 5312–5313
doi: 10.1021/ja043245a
132 Shankar S S, Rai A, Ahmad A, . Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials , 2005, 17(3): 566–572
doi: 10.1021/cm048292g
133 Tsuji M, Hashimoto M, Nishizawa Y, . Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry - A European Journal , 2005, 11(2): 440–452
doi: 10.1002/chem.200400417
134 Li C, Cai W, Li Y, . Ultrasonically induced Au nanoprisms and their size manipulation based on aging. The Journal of Physical Chemistry B , 2006, 110(4): 1546–1552
doi: 10.1021/jp055522l
135 Sun Y, Mayers B, Xia Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters , 2003, 3(5): 675–679
doi: 10.1021/nl034140t
136 Zhang J, Liu H, Wang Z, . Synthesis of high purity Au nanobelts via the one-dimensional self-assembly of triangular Au nanoplates. Applied Physics Letters , 2007, 91(13): 133112 (3 pages)
137 Zheng H, Smith R K, Jun Y-W, . Observation of single colloidal platinum nanocrystal growth trajectories. Science , 2009, 324(5932): 1309–1312
doi: 10.1126/science.1172104
138 Abécassis B, Testard F, Spalla O, . Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. Nano Letters , 2007, 7(6): 1723–1727
doi: 10.1021/nl0707149
139 Polte J, Erler R, Thunemann A F, . Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano , 2010, 4(2): 1076–1082
doi: 10.1021/nn901499c
140 Chen C-H, Sarma L S, Chen J-M, . Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy. ACS Nano , 2007, 1(2): 114–125
doi: 10.1021/nn700021x
141 Harada M, Inada Y. In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions. Langmuir , 2009, 25(11): 6049–6061
doi: 10.1021/la900550t
142 Cheong S, Watt J, Ingham B, . In situ and ex situ studies of platinum nanocrystals: Growth and evolution in solution. Journal of the American Chemical Society , 2009, 131(40): 14590–14595
doi: 10.1021/ja9065688
143 Middelkoop V, Boldrin P, Peel M, . Imaging the inside of a continuous nanoceramic synthesizer under supercritical water conditions using high-energy synchrotron X-radiation. Chemistry of Materials , 2009, 21(12): 2430–2435
doi: 10.1021/cm900118z
144 Bremholm M, Felicissimo M, Iversen B B. Time-resolved in situ synchrotron X-ray study and large-scale production of magnetite nanoparticles in supercritical water. Angewandte Chemie International Edition , 2009, 48(26): 4788–4791
doi: 10.1002/anie.200901048
145 Bremholm M, Becker-Christensen J, Iversen B B. High-pressure, high-temperature formation of phase-pure monoclinic zirconia nanocrystals studied by time-resolved in situ synchrotron X-ray diffraction. Advanced Materials , 2009, 21(35): 3572–3575
doi: 10.1002/adma.200803431
146 Park S Y, Lytton-Jean A K R, Lee B, . DNA-programmable nanoparticle crystallization. Nature , 2008, 451(7178): 553–556
doi: 10.1038/nature06508
147 Shevchenko E V, Talapin D V, Kotov N A, . Structural diversity in binary nanoparticle superlattices. Nature , 2006, 439(7072): 55–59
doi: 10.1038/nature04414
148 Li W Y, Camargo P H C, Au L, . Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. Angewandte Chemie International Edition , 2010, 49(1): 164–168
149 Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotechnology , 2007, 2(7): 435–440
doi: 10.1038/nnano.2007.189
150 Chak C-P, Xuan S, Mendes P M. Discrete functional gold nanoparticles: Hydrogen bond-assisted synthesis, magnetic purification, supramolecular dimer and trimer formation. ACS Nano , 2009, 3(8): 2129–2138
doi: 10.1021/nn9005895
151 Guerrero-Martínez A, Pérez-Juste J, Carbó-Argibay E. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angewandte Chemie International Edition , 2009, 48(50): 9484–9488
doi: 10.1002/anie.200904118
152 Brousseau III L C, Novak J P, Marinakos S M, . Assembly of phenylacetylene-bridged gold nanocluster dimers and trimers. Advanced Materials , 1999, 11(6): 447–449
doi: 10.1002/(SICI)1521-4095(199904)11:6<447::AID-ADMA447>3.0.CO;2-I
153 Nykypanchuk D, Maye M M, van der Lelie D, . DNA-guided crystallization of colloidal nanoparticles. Nature , 2008, 451(7178): 549–552
doi: 10.1038/nature06560
Related articles from Frontiers Journals
[1] Junbo LI,Jianlong ZHAO,Wenlan WU,Ju LIANG,Jinwu GUO,Huiyun ZHOU,Lijuan LIANG. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles[J]. Front. Mater. Sci., 2016, 10(2): 178-186.
[2] Selvaraj KUNJIAPPAN,Ranjana CHOWDHURY,Chiranjib BHATTACHARJEE. A green chemistry approach for the synthesis and characterization of bioactive gold nanoparticles using Azolla microphylla methanol extract[J]. Front. Mater. Sci., 2014, 8(2): 123-135.
[3] B. ASWATHY, G. S. AVADHANI, S. SUJI, G. SONY. Synthesis of β-cyclodextrin functionalized gold nanoparticles for the selective detection of Pb2+ ions from aqueous solution[J]. Front Mater Sci, 2012, 6(2): 168-175.
[4] Xiang MAO, Zheng-Ping LI, Zhi-Yong TANG. One pot synthesis of monodispersed L-glutathione stabilized gold nanoparticles for the detection of Pb2+ ions[J]. Front Mater Sci, 2011, 5(3): 322-328.
[5] Lan-Zheng REN, Jin-Xiu WANG. A simple hydrothermal route to fabrication of single-crystalline silver nanoplates using poly(vinyl pyrrolidone)[J]. Front Mater Sci Chin, 2010, 4(4): 407-410.
[6] Lan-Zheng REN, Jin-Xiu WANG. Facile one-pot preparation of silver nanowires using an alcohol ionic liquid[J]. Front Mater Sci Chin, 2010, 4(4): 398-401.
[7] Yu ZHANG, Qing-Shui YIN, Hua-Fu ZHAO, Jian LI, Yue-Teng WEI, Fu-Zhai CUI, Hua-Yang HUANG. Antibacterial and biological properties of silver-loaded coralline hydroxyapatite[J]. Front Mater Sci Chin, 2010, 4(4): 359-365.
[8] Jiang-Yu WU, Yan LI, Yong MAO, Jia XU, Xu ZHOU, . Amine-terminated TEG-derived PAMAM dendrimer as template for preparation of gold nanoparticles in water[J]. Front. Mater. Sci., 2010, 4(1): 95-99.
[9] LIU Shuxia, HE Junhui. Inorganic replication of human hair and in situ synthesis of gold nanoparticles[J]. Front. Mater. Sci., 2007, 1(3): 263-267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed