Frontiers of Optoelectronics

Online First
The manuscripts published below will continue to be available from this page until they are assigned to an issue.
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Ultra-flat broadband microwave frequency comb generation based on optical frequency comb with a multiple-quantum-well electro-absorption modulator in critical state
Cong SHEN, Peili LI, Xinyuan ZHU, Yuanfang ZHANG, Yaqiao HAN
Front. Optoelectron.    https://doi.org/10.1007/s12200-019-0915-4
Abstract   HTML   PDF (2051KB)

In this paper, we proposed a novel ultra-flat broadband microwave frequency comb (MFC) generation based on optical frequency comb (OFC) with a multiple-quantum-well electro-absorption modulator (MQW-EAM) in critical state. The scheme is simple and easy to adjust. The performance of the MFC generation scheme is investigated using software Optisystem. The results show that the comb spacing of MFC can be adjusted from 5 to 20 GHz by changing RF signal’s frequency and the MFC is almost independent on the linewidth of the tunable laser diode. The performance of the MFC can be improved by reasonably increasing the voltage of the RF, the small-signal gain of the Erbium-doped fiber amplifier (EDFA) and the responsivity of the photodetector. The MFC generated by this scheme has 300 GHz effective bandwidth with 15 comb lines, whose power variation is 0.02 dB, when the components’ parameters in the Optisystem are set as follows: the power of tunable laser diode (TLD) is 0 dBm, the wavelength is 1552.52 nm, and linewidth is 1 MHz; RF signal’s frequency is 20 GHz and the voltage is 10 V; the reverse bias voltage of MQW-EAM is 6.92 V; the small-signal gain of the EDFA is 40 dB; the responsivity of the photodetector (PD) is 1 A/W.

Table and Figures | Reference | Related Articles | Metrics
High accuracy object detection via bounding box regression network
Lipeng SUN, Shihua ZHAO, Gang LI, Binbing LIU
Front. Optoelectron.    https://doi.org/10.1007/s12200-019-0853-1
Abstract   HTML   PDF (1564KB)

As one of the primary computer vision problems, object detection aims to find and locate semantic objects in digital images. Different with object classification, which only recognizes an object to a certain class, object detection also needs to extract accurate locations of objects. In the state-of-the-art object detection algorithms, bounding box regression plays a critical role in order to achieve high localization accuracy. Almost all the popular deep learning based object detection algorithms have utilized bounding box regression for fine tuning of object locations. However, while bounding box regression is widely used, there is few study focused on the underlying rationale, performance dependencies, and performance evaluation. In this paper, we proposed a dedicated deep neural network for bounding box regression, and presented several methods to improve its performance. Some ad hoc experiments are conducted to prove the effectiveness of the network. Also, we apply the network as an auxiliary module to the faster R-CNN algorithm and test them on some real-world images. Experiment results show certain performance improvements on detection accuracy in term of mean IOU.

Table and Figures | Reference | Related Articles | Metrics
Ship hull flexure measurement based on integrated GNSS/LINS
Di WU, Yu JIA, Li WANG, Yueqiang SUN
Front. Optoelectron.    https://doi.org/10.1007/s12200-019-0867-8
Abstract   HTML   PDF (1462KB)

For precision carrier-based landing aid, the position of reference point on the top of island shall be precisely transferred to the landing point on the deck, so the position transfer error caused by the hull flexure is not negligible. As the existing method is not very applicable to measure the hull flexure, a new technique based on integrated Global Navigation Satellite Systems/Laser Gyro Inertial Navigation System (GNSS/LINS) is proposed in this paper. This integrated GNSS/LINS based measurement method is designed to monitor the hull flexure and set up an integrated GNSS/LINS measurement model based on raw pseudo-range and pseudo-range rate measurement and carrier phase differential positioning measurement to effectively eliminate the measurement error caused by cycle slip and multi-path effect from GNSS. It is shown by demonstration test and analysis that this technique has the capability to precisely measure the hull flexure, with the accuracy being better than 0.02 m.

Table and Figures | Reference | Related Articles | Metrics
Robot visual guide with Fourier-Mellin based visual tracking
Chao PENG, Danhua CAO, Yubin WU, Qun YANG
Front. Optoelectron.    https://doi.org/10.1007/s12200-019-0862-0
Abstract   HTML   PDF (3230KB)

Robot vision guide is an important research area in industrial automation, and image-based target pose estimation is one of the most challenging problems. We focus on target pose estimation and present a solution based on the binocular stereo vision in this paper. To improve the robustness and speed of pose estimation, we propose a novel visual tracking algorithm based on Fourier-Mellin transform to extract the target region. We evaluate the proposed tracking algorithm on online tracking benchmark-50 (OTB-50) and the results show that it outperforms other lightweight trackers, especially when the target is rotated or scaled. The final experiment proves that the improved pose estimation approach can achieve a position accuracy of 1.84 mm and a speed of 7 FPS (frames per second). Besides, this approach is robust to the variances of illumination and can work well in the range of 250-700 lux.

Table and Figures | Reference | Related Articles | Metrics
Transmission characteristics of linearly polarized light in reflection-type one-dimensional magnetophotonic crystals
Chunxiang ZENG, Zeqing WANG, Yingmao XIE
Front. Optoelectron.    https://doi.org/10.1007/s12200-019-0870-0
Abstract   HTML   PDF (1145KB)

The propagation properties of linearly polarized light in reflection-type one-dimensional magnetophotonic crystals are studied by using the 4×4 transmission matrix method. The structure models of reflection-type one-dimensional magnetophotonic crystals are designed, the magnetic field direction control characteristics of reflection spectrum and Kerr rotation angle are discussed, and the effect of applied magnetic field direction and strength on reflection spectrum and Kerr rotation angle are analyzed. The results show that the non-diagonal elements in the dielectric constant of magneto optical materials change when the angle ϕ between applied magnetic field and optical path changes, the reflectivity and Kerr rotation angle decrease when the angle ϕ increases; when the applied magnetic field strength changes, the reflectivity and Kerr rotation angle increase when the applied magnetic field strength increases; by adjusting the angle ϕ and strength of the applied magnetic field, the rotation angle of Kerr can be adjusted to 45°, and a more flat reflection spectrum can be obtained by designing the appropriate structure.

Table and Figures | Reference | Related Articles | Metrics
Improved offline multi-objective routing and wavelength assignment in optical networks
Harpreet KAUR, Munish RATTAN
Front. Optoelectron.    https://doi.org/10.1007/s12200-019-0850-4
Abstract   HTML   PDF (979KB)

Optical networks act as a backbone for coming generation high speed applications. These applications demand a very high bandwidth which can be exploited with the use of wavelength division multiplexing (WDM) technology. The issue of setting light paths for the traffic demands is routing and wavelength assignment (RWA) problem. Based on the type of traffic patterns, it can be categorized as offline or online RWA. In this paper, an effective solution to offline (static) routing and wavelength assignment is presented considering multiple objectives simultaneously. Initially, the flower pollination (FP) technique is utilized. Then the problem is extended with the parallel hybrid technique with flower pollination and intelligent water drop algorithm (FPIWDA). Further, FPIWD is hybrid in parallel with simulated annealing (SA) algorithm to propose a parallel hybrid algorithm FPIWDSA. The results obtained through extensive simulation show the superiority of FPIWD as compared to FP. Moreover, the results in terms of blocking probability with respect to wavelengths and load of FPIWDSA are more propitious than FP and FPIWD.

Table and Figures | Reference | Related Articles | Metrics
Review on partially coherent vortex beams
Jun ZENG, Rong LIN, Xianlong LIU, Chengliang ZHAO, Yangjian CAI
Front. Optoelectron.    https://doi.org/10.1007/s12200-019-0901-x
Abstract   HTML   PDF (9862KB)

Ever since vortex beams were proposed, they are known for owning phase singularity and carrying orbital angular momentum (OAM). In the past decades, coherent optics developed rapidly. Vortex beams have been extended from fully coherent light to partially coherent light, from scalar light to vector light, from integral topological charge (TC) to fractional TC. Partially coherent vortex beams have attracted tremendous interest due to their hidden correlation singularity and unique propagation properties (e.g., beam shaping, beam rotation and self-reconstruction). Based on the sufficient condition for devising a genuine correlation function of partially coherent beam, partially coherent vortex beams with nonconventional correlation functions (i.e., non-Gaussian correlated Schell-model functions) were introduced recently. This timely review summarizes basic concepts, theoretical models, generation and propagation of partially coherent vortex beams.

Table and Figures | Reference | Related Articles | Metrics
Experimental and simulation assessments of underwater light propagation
Fatah ALMABOUADA, Manuel Adler ABREU, João M. P. COELHO, Kamal Eddine AIADI
Front. Optoelectron.    https://doi.org/10.1007/s12200-019-0865-x
Abstract   HTML   PDF (2058KB)

This paper investigates the light propagation through several types of water by experimental and simulation. The Zemax-ray tracing software allowed to simulate the propagation of light in water and to observe the receiver response by reproducing the real conditions of propagation. The underwater environment has been reproduced by a 1.2 m long water tube and 20 cm in diameter with a glass window fitted on one side. The use of tap water with different amounts of sand leads toward three types of water with different attenuation coefficients (0.133, 0.343, 0.580 m-1). The light transmission in the three types of water was experimentally evaluated using a doubled Nd:YAG laser with energy of 4.3 mJ and a pulse width of 20 ns. Comparisons were done between simulation and experimental results.

Table and Figures | Reference | Related Articles | Metrics
Optimization of organic light emitting diode for HAT-CN based nano-structured device by study of injection characteristics at anode/organic interface
Neha JAIN, O. P. SINHA, Sujata PANDEY
Front. Optoelectron.    https://doi.org/10.1007/s12200-019-0848-y
Abstract   HTML   PDF (1159KB)

To increase the current density of the hole only device, 1, 4, 5, 8, 9, 11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) material has been inserted in the device at the indium tin oxide (ITO)/organic interface. Since HAT-CN molecule can withdraw electrons, it can alter electronic properties of the electrodes and hence inserted between the organic/metal interfaces. This paper deals with the optimization of the thickness of organic-metal layers to enhance the efficiency. Also, efforts have been made to increase the current density and reduce the operating voltage of the device. The material 2, 7-bis [N, N-bis (4-methoxy-phenyl) amino]-9, 9-spirobifluorene (Meo-Spiro-TPD) is used to simulate the hole only device because it is a thermally stable hole transport material. Simulated results shows that better current density values can be achieved compared to fabricated one by optimizing the organic metal layer thickness. The best optimized layer thickness of 22 nm for Alq3, 25 nm for CBP* doped with Ir(ppy)3, 9 nm for Meo-Spiro TPD and 4 nm for HAT-CN which results in current density of 0.12 A/cm2 with a reduction in operating voltage by approximately 2 V

4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), iridium, tris[2-(2-pyridinyl-κN)phenyl-κC] (Ir(ppy)3)

.

Table and Figures | Reference | Related Articles | Metrics
Antimony doped Cs2SnCl6 with bright and stable emission
Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG
Front. Optoelectron.    https://doi.org/10.1007/s12200-019-0907-4
Abstract   HTML   PDF (3339KB)

Lead halide perovskites, with high photoluminescence efficiency and narrow-band emission, are promising materials for display and lighting. However, the lead toxicity and environmental sensitivity hinder their potential applications. Herein, a new antimony-doped lead-free inorganic perovskites variant Cs2SnCl6:xSb is designed and synthesized. The perovskite variant Cs2SnCl6:xSb exhibits a broadband orange-red emission, with a photoluminescence quantum yield (PLQY) of 37%. The photoluminescence of Cs2SnCl6:xSb is caused by the ionoluminescence of Sb3+ within Cs2SnCl6 matrix, which is verified by temperature dependent photoluminescence (PL) and PL decay measurements. In addition, the all inorganic structure renders Cs2SnCl6:xSb with excellent thermal and water stability. Finally, a white light-emitting diode (white-LED) is fabricated by assembling Cs2SnCl6:0.59%Sb, Cs2SnCl6:2.75%Bi and Ba2Sr2SiO4:Eu2+ onto the commercial UV LED chips, and the color rendering index (CRI) reaches 81.

Table and Figures | Reference | Related Articles | Metrics
First page | Prev page | Next page | Last page Page 1 of 2, 20 articles found