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Abstract Considerable research efforts have been
devoted to the investigation of distributed feedback
(DFB) organic lasing in photonic crystals in recent
decades. It is still a big challenge to realize DFB lasing
in complex photonic crystals. This review discusses the
recent progress on the DFB organic laser based on one-,
two-, and three-dimensional photonic crystals. The photo-
physics of gain materials and the fabrication of laser
cavities are also introduced. At last, future development
trends of the lasers are prospected.

Keywords photonic crystals, microcavity lasers, distrib-
uted feedback (DFB)

1 Introduction

Photonic crystals, proposed by Yablonovitch [1] and John
[2], have shown great potential for developing different
photonic devices [3–5]. Great interest is focused on
realizing the photonic band gap and the photonic
localization of photonic crystals [6–8]. In the photonic
band gap, the propagation of electromagnetic waves inside
the photonic crystals is forbidden in all directions. It
provides new possibilities for us to control the behavior of
electromagnetic waves. Especially, the controllability of
the optical density of modes helps us realize the
enhancement of emission at the photonic band edge [9–
11]. Based on this characteristic, much work has so far
focused on potential applications in the fields of nanoscale
lasers [12–14], optical switching [15–17], optical logic
gates [18–20], gap solitons [21–23], sensors [24–26], and
so on.
Since the pioneering work of Painter et al. [27], a

significant effort has been devoted to the development of
nanoscale lasers based on photonic crystals. The nanoscale
lasers can be divided into two types: photonic band-gap
defect mode lasers [27–29] and photonic band edge lasers

[30–32]. The former has a resonant cavity with a defect and
laser oscillations origin from the resonant modes of the
cavity. The latter has a resonant cavity without defects and
lasing actions are enhanced by the optical density of modes
at the band edge of photonic crystals.
A low threshold is an intrinsical feature of photonic band

edge lasers [33]. It can be attributed to the low loss and
high gain of the laser system. For photonic band edge
lasers, the loss includes from the propagation loss and the
radiation loss [30]. Generally, the propagation loss is very
small for the photonic band edge lasers due to the
extremely slow group velocity near the photonic band
edges. The radiation loss mainly exists in one- (1D) and
two- (2D) dimensional photonic crystals due to the poor
confinement of light in a certain dimension. In theory, the
radiation loss is quite small in the three-dimensional (3D)
case because the 3D photonic bandgap enables a 3D
confinement of light. The gain in the photonic band edge
lasers will be discussed in detail later.
Photonic band edge lasers can be divided into two

categories: lasers based on the guided modes and lasers
based on the waveguide modes. For lasers based on the
guided modes, the guided mode is related to the photonic
band gap of photonic crystals. A photonic crystal acts as
the laser cavity [34,35]. For lasers based on the waveguide
modes, the waveguide mode is determined by a combina-
tion of a waveguide and a “photonic crystal” with weak
modulation [36–38]. The latter is often referred to as the
distributed feedback (DFB) lasers [39–41]. For 1D and 2D
cases, the “photonic crystal” with weak modulation is
known as “gratings”. The laser cavity consists of a grating
and a waveguide [42–44]. The nature of the photonic band
edge lasers can be explained by the dispersion relations in
the laser cavity [36,45].
Furthermore, the development of gain materials has a

great influence on the development of lasers. On the one
hand, it can improve the performance of lasers; on the other
hand, it can hasten new lasers. The gain materials involved
in DFB lasers include organic semiconductors, inorganic
semiconductors, dyes, quantum dots, perovskite, carbon
dots, and so on. Due to the rapid development of the gain

Received June 10, 2019; accepted August 11, 2019

E-mail: trzhai@bjut.edu.cn

Front. Optoelectron. 2020, 13(1): 18–34
https://doi.org/10.1007/s12200-019-0942-1



materials, it is impossible to review completely the most
relevant advances. This review focuses on characteristics
of organic semiconductors, organic dyes, and semicon-
ductor quantum dots.
In this paper, we briefly review some advances in DFB

lasers in 1D, 2D, and 3D photonic crystals. We discuss
photophysics of gain materials, design and fabrication of
laser cavity, principles of modeling feedback mechanisms,
and progress toward applications. The trends and chal-
lenges for DFB polymer lasers have also been discussed.

2 Gain materials

As one of the most important components of the laser
system, gain materials play a crucial role in the laser
performance. Some gain materials open up the prospect of
high-performance lasers suitable for real applications.
Inorganic semiconductor lasers dominate the laser applica-
tions for several decades [46–48]. However, the common
inorganic semiconductor lasers cannot cover the whole
visible spectral region. Dye lasers are investigated almost
simultaneously with the discovery of the laser, which
operates using dye molecules [49]. In addition, as a gain
material with a zero-dimensional density of states,
quantum dots were applied to lasers successfully in the
1990s [50–52]. There are some differences between
organic semiconductors, organic dyes, and semiconductor
quantum dots, including the film-forming property,
electrical conductivity, and the difficulty of manufacturing.
Recently, some new materials have been developed and
introduced to lasers, such as perovskites [53–55], carbon
nanodots [56,57]. We will not address these breathtaking
advances in this paper.

2.1 Organic semiconductors

Organic semiconductors are usually chain-like molecules,

which can be regarded as arrays of randomly oriented
chromophores consisted of conjugated segments. The
segment comprises a huge number of fundamental repeat
units. The photophysical property of the material origins
from the overlap of the molecular orbitals, which can be
revealed by the time-resolved measurements. According to
the molecular structure, organic semiconductors can be
classified into small molecules (molecular weight< 103)
[58–60], macromolecules [61–63], and polymers (mole-
cular weight< 104) [64–66]. Small molecules include
conjugated and non-conjugated molecules, organic metal
complexes, and so on. Macromolecules include oligomers,
starburst molecules, and dendrimers. Polymers include the
poly(phenylenevinylene)s [67–69], the ladder-type poly
(para-phenylene) [70–72], the polyfluorenes [73–75], and
so on.
As an attractive gain material, organic semiconductors

show rich and broad emission spectra from the near
ultraviolet to infrared, large Stokes shift, strong absorption
coefficients (~105 cm–1), low quenching rate at high
concentrations, high fluorescence quantum efficiencies,
and perfect charge transport properties. Rich and broad
emission spectra enable the possibility of multi-wave-
length emissions and tunable lasers. Large Stokes shift
avoids the absorption of emission lights. Strong absorption
coefficients imply a strong amplification of emission lights.
Low quenching rate at high concentrations facilitates the
easy fabrication of neat solid films. High fluorescence
quantum efficiencies bring about excellent performances
including low thresholds and high slope efficiencies.
Perfect charge transport properties provide the potential
to realize electrically pumped laser devices. Most of the
features are derived from the enormous range of
customizable structures. Moreover, the simple fabrication
and flexibility of organic semiconductors provide more
opportunities for electronics and optoelectronics.
The stimulated emission is firstly observed in a

conjugated polymer film of poly(p-phenylene vinylene,

Fig. 1 Absorption and PL spectra of (a) PFO, (b) F8BT, and (c) MDMO-PPV. The upper panel presents the corresponding molecular
structure. Reproduced with permission [80]. Copyright 2015, RSC Publishing
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PPV) [76]. Nowadays, there are plenty of polymers that are
widely used in lasing applications. In this paper, we mainly
focus on three types of polymers, poly[9,9-dioctylfl
uorenyl-2,7-diyl]–end capped with DMP (PFO, American
Dye Source), poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-
(1,4-benzo-(2,1′,3) -thiadiazole)] (F8BT, American Dye
Source), and poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-
1,4-phenylenevinylene] (MDMO-PPV, Sigma-Aldrich).
The absorption (open circles) and photoluminescence
(PL, close circles) spectra of PFO, F8BT, and MDMO-
PPVare plotted in Fig. 1, respectively. Note that the Stokes
shift (the deviation between the absorption and PL spectra)
is large enough to avoid the absorption of emission lights.
The upper panels of Fig. 1 show the molecular structures.
The net gain coefficient of PFO, F8BT, MDMO-PPV are
about 74, 26, 50 cm–1, respectively [77–79].

2.2 Organic dyes

Almost with the invention of the laser, the organic dyes
came to people’s attention. The dye laser action was firstly
reported in 1966 [81]. After years of rapid development,
the organic dye laser becomes a powerful tool for the
development in the areas of physics, chemistry, and
materials. Dyes are a class of colored materials which
can impart color to other materials. Later organic
compounds are included in the dyes, such as rhodamine
6G. Generally, the molecular weight of dyes is about
several hundreds. Spectral narrowing effect can be
observed in hundreds of organic dyes under pumping
conditions. The emission wavelength varies from 190 to
1850 nm. Dyes include cyanine dyes [82–84], oxazine
dyes [85–87], coumarin dyes [88–90], rhodamine dyes
[91–93], and so on.
The advantages of dyes are strong absorptions, near

unity quantum efficiency, broad spectra, excellent tun-
ability, and easy fabrications. However, the dye is non-
conductive, which is regarded as the main obstacle for
realizing electrically pumping laser devices. Most optical
behaviors of dyes can be understood by a quasi-four-level
model [49]. For laser applications, the state of dyes can be
solid, liquid, and gas. Figure 2 presents the absorption

(dotted curves) and PL (solid curves) spectra of three
common laser dyes, coumarin 440 (C440), coumarin 153
(C153), and rhodamine 6G (R6G).

2.3 Semiconductor quantum dots

Quantum dots (QDs) are tiny clusters of semiconductors
with dimensions of only several nanometers. The great
potential of semiconductor QDs as gain materials for laser
applications has been recognized since the appearance of
QDs laser [94–96]. Nowadays, semiconductor QDs lasers
are regarded as highly efficient and compact light sources.
The direct electrical control of QDs lasers has also been
realized. Two classes of QDs are very promising for laser
devices [52]. One is III-V QDs, such as InGaAs/InAs QDs.
The other is semiconductor nanoparticles, such as PbS and
CdTe. Usually, the former is fabricated on a semiconductor
substrate. The latter is incorporated with transparent
dielectric matrices.
The advantages of semiconductor QDs are ultrafast

carrier dynamics, low threshold current density, broadband
gain and absorption, and high PL quantum yield. Such
device designs have opened up new possibilities in
ultrafast science and technology. The semiconductor QDs
is sensitive to the temperature due to the high mobility, and
the fabrication method of QDs devices is complicated
compared with that of its counterparts mentioned above.
Figure 3 demonstrates the absorption (open circles) and PL
(solid circles) spectra of three common QDs, ZnCdS/ZnS
CQDs, CdSe/ZnS CQDs, and CdSe/CdS/ZnS CQDs.

3 Laser cavities

The principal parts of a laser are the pump, the gain
material, and the cavity. The pump supplies energy for the
laser to operate, which includes optical pumping and
electrical pumping. Prospects for the pump will be
discussed later. The gain materials mentioned above
amplify the light by simulated emission, which affects
the temporal characteristics and the power characteristics
of the laser. The cavity provides feedback of the light,

Fig. 2 Absorption and PL spectra of (a) coumarin 440, (b) coumarin 153, and (c) rhodamine 6G. Reproduced with permission [90].
Copyright 2014, OSA Publishing
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which effectively increases the optical path of the light
through the gain materials to build up the laser oscillation.
The cavity defines the frequency characteristics, the spatial
characteristics, and the power characteristics of the laser.
The frequency characteristics include the longitudinal, or
axial, modes of the cavity, and the linewidth. The spatial
characteristics include the pattern, polarization, and beam
divergence of the laser. The power characteristics include
the laser threshold and output efficiency. Generally
speaking, the main parameters of the cavity contain the
type, the material, the quality, and the size.
The most common cavity types can be divided into four

categories: Fabry-Perot (FP) cavity [97–99], whispering-
gallery-mode (WGM) cavity [100–102], distributed-
Bragg-reflector (DBR) cavity [103–105], and DFB cavity
[106,107], as shown in Fig. 4. There are periodic structures
in the DBR cavity and DFB cavity. So, the lasing action in
the DBR cavity and DFB cavity can be explained by the
theory of photonic crystals. This review will focus on the
DFB cavity. Recently, the compound cavity has begun to
receive research attention, which can be regarded as a
combination of several common cavity types [108–110].

The cavity supports a discrete set of wavelengths, which
are also called the resonant wavelengths (frequencies). The
relationship between the optical path of the cavity (P) and
the resonant wavelength (l) is described as P = kl/2, where
k is an integer. The discreteness of resonant wavelength
origins from the boundary condition of the light in the
cavity. The phase of light must be exactly the same after a
round-trip propagation in the cavity. This is the major
reason that most of the characteristics depend on the cavity.
Moreover, the allowed resonant frequencies of the laser
must be within the PL spectrum of the gain material. More
strictly, to build up a stable oscillation of the laser mode,
the gain should not be smaller than the loss in one round-
trip of the cavity. Thus, in order to achieve lasing, the
cavity must be designed carefully. The mode of the cavity
should match the gain spectra of the material.

3.1 Types of laser cavities

As mentioned above, various cavity configurations are
proposed to design the laser devices. Among them, the
DFB cavity is regarded as the most promising solution for

Fig. 3 Absorption and PL spectra of (a) blue QDs, (b) green QDs, and (c) red QDs

Fig. 4 Schematics of various cavity types. (a) FP cavity; (b) WGM cavity; (c) DBR cavity; (d) DFB cavity
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realizing electrically pumped polymer lasers. Therefore, in
the rest of this section, we will focus on the DFB cavity and
summarize progress in design, fabrication, and feedback
mechanism of the DFB cavity type.
According to the spatial structure, DFB cavities can be

divided into 1D [111], 2D, and 3D structures. According to
the transnational symmetry, DFB cavities can be divided
into periodic, quasi-periodic, and aperiodic structures.
Moreover, the DFB cavities can be divided into dielectric
and metallic structures. Overall, the basic motivation for
developing different laser cavities is to achieve a rich
variety of temporal, spatial, spectral, and power properties.
Figure 5 demonstrates the photonic crystals which can be
employed as the DFB cavity. Theoretically, the random
structure in Fig. 5(i) is not a DFB structure, which is
usually used as a feedback cavity of random lasers [93].
Many irregular closed-loop paths can be excited in the
cavity, which may support certain oscillation modes. Since
the feedback mechanism of random lasers is quite different
from that of DFB lasers [112,113], we will not address the
random structure in detail.
1D – 3D structures include gratings/complex lattices

[114,115], quasi-crystals [116–118], chirped grating/gra-
dual periodic structures [119], circular structure [120,121],
spiral structure [122]. Note that 3D structures can be

composed of several 1D/2D structures. All these structures
can be employed as DFB cavities.

3.2 Design of laser cavities

The main objectives of the design of laser cavities are to
match the gain materials and to control the output
characteristics. Several theories are developed to explore
the property of DFB lasers, such as the diffraction theory,
the couple wave theory, and the photonic bandgap theory.
These theories provide a top-down approach to design the
laser cavities.
According to the diffraction theory, there are three main

roles of cavities, the feedback, the output coupling, and the
waveguide. Some characteristics of DFB lasers can be
obtained by employing the diffraction theory, such as
output directions, output wavelengths, and mode numbers.
As shown in Fig. 6, a typical 1D DFB cavity consists of

a grating and a waveguide. The waveguide plays two roles,
guiding wave and providing gain. In Fig. 6(a), the red
curve denotes the profile of the waveguide mode. Note that
there exists a propagating mode and its counter propagat-
ing waveguide mode due to the diffraction of the grating
[124]. The solid and dashed arrows indicate the feedback
and the output direction, respectively. In Fig. 6(b), the red

Fig. 5 Photonic crystals for DFB cavities. (a) 1D gratings; (b) 2D periodic structure; (c) 3D periodic structure; (d) Fibonacci quasi-
crystals; (e) 2D quasi-crystals; (f) 3D quasi-crystals; (g) Chirped gratings; (h) 2D gradual periodic structure; (i) 3D random structure
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arrows present the ray tracing of the propagating and
emitting light. It is a simple diffraction picture.
The wavelengths of the waveguide mode must satisfy

the Bragg condition in the cavity.

2nef fΛ ¼ ml: (1)

Here, neff is the effective refractive index of the waveguide
mode, L is the grating period, m is a positive integer
representing the number of standing wave nodes formed by
the propagating and counterpropagating waveguide
modes, and l is the wavelength of the waveguide mode.
The guided wave is diffracted by the grating at an angle f,
forming the laser output as shown in Fig. 6. The emitted
light should satisfy the condition of constructive inter-
ference:

2πnef f
l

Λþ 2π
l
Λsinf ¼ 2πl, (2)

where l is an integer that represents the diffraction order.
By substituting Eq. (1) into Eq. (2), the relationship
between the output direction of light and the diffraction
order is obtained as

sinf

nef f
¼ 2l

m
– 1, l 2 ½0,m�: (3)

Take the case of 1D gratings, the feedback is established
by mth order diffraction, whereas the output coupling is
supported by different diffraction with order numbers
below or equal to m.
The mode number is decided by the parameter of the

waveguide. For a given waveguide, there exist the critical
thicknesses for the transverse electric mode (TE) and the
transverse magnetic mode (TM), respectively. For the mth
order TE mode (TEm), the critical thickness of the
waveguide dTE is given by

dTE ¼ ð2m – 1Þl
4
ffiffiffiffiffiffiffiffiffi
ε – 1

p , (4)

for the mth order TMmode (TMm), the critical thickness of
the waveguide dTM is given by

dTM ¼ ml

2
ffiffiffiffiffiffiffiffiffi
ε – 1

p , (5)

where ε is the effective refractive dielectric constant.
According to the relationship of the waveguide mode with
the waveguide thickness in Eqs. (4) and (5), if the
waveguide thickness is larger than or equal to the critical
thicknesses (dTE or dTM), additional modes can be excited.
Under uncoupling conditions, 2D and 3D DFB cavities

can be considered as a linear combination of 1D DFB
cavities. Therefore, the diffraction theory is applicable to
high dimensional cases.
The coupled wave theory reveals most of the physical

mechanisms of DFB lasers, such as resonant mode
patterns, mode selectivity, differential quantum efficiency,
threshold conditions, and effects of end reflections [125–
127]. Even under approximate conditions, the couple wave
theory can be used to investigate the mode intensity
distribution, the lasing wavelength, and the effective
refractive index [128–130]. Here, takes an analytical
approach for example, it is a combination of the coupled
wave theory with the waveguide theory. The physical
picture of this method is the resonant mode should meet
both the Bragg condition and the waveguide condition.
Figure 7(a) presents a typical cavity, which consists of a

grating and a gain waveguide. The cavity is reduced to a
four-layered waveguide structure in Fig. 7(b). The electric
field distribution in four waveguides in Fig. 7(b) can be
defined as [129]

Eyðx,zÞ ¼ e – ikzx

E1e
a1x, x2ð –1,d�,

E2e
– a2x þ E

0
2e
a2x, x2ðd,d þ t�,

E3cosða3xþ ΨÞ, x2ðd þ t,d þ t þ h�,
E4e

– a4x, x2ðd þ t þ h,þ1Þ,

8>>>>><
>>>>>:

(6)

Fig. 6 (a) Schematic of the feedback and the outcoupling of the waveguide mode; (b) diffraction theory of DFB lasers. Reproduced with
permission [123]. Copyright 2019, MDPI
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here, kz is the wave number in the z-direction. Ej and E
0
2 are

the electric field amplitudes; aj is the transverse wave

number, and aj ¼
2π
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jn2ef f – n2j j

q
, j = 1, 2, 3, 4;Ψ is a phase

shift which is related with aj. Ψ can be specified as

mπþ tan – 1a4
a3

– ðd þ t þ hÞa3. m is a positive integer.

All electric field components can be calculated by
applying the boundary condition. Therefore, the field
distribution in each layer can be obtained [129,130]. By
considering Eq. (1), the output wavelength can be also
obtained.
Besides the couple wave theory, the photonic bandgap

theory is also a full theory of DFB lasers [37,39,41]. The
motivation comes from the fact that the resonant
wavelength in Eq. (1) cannot propagate in the cavity due
to the photonic bandgap. For easy understanding, a
simplified model of 1D DFB lasers is derived using the
coupled mode theory as follows. As shown in Fig. 7, the
dielectric function of the cavity can be described by
εðx,zÞ ¼ εð0ÞðxÞ þ Δεðx,zÞ. Here, εð0ÞðxÞ is the dielectric
function of the cavity without considering the grating;
Δεðx,zÞ represents the periodic change of the dielectric
function caused by the grating. Thus, the Fourier series of
Δεðx,zÞ is described by

Δεðx,zÞ ¼ ε0Σm≠0ΔεmðxÞejm
2π
Λ z, (7)

here ε0 is the dielectric constant in a vacuum. ΔεmðxÞ is the
mth Fourier coefficients. The wave equation of TE modes
(Ey component) can be derived as

∂2

∂x2
þ ∂2

∂z2
þ ω2�0εð0ÞðxÞ

� �
Ey ¼ –ω2�0Δεðx,zÞEy, (8)

where ω is the angular frequency, and �0 is the
permeability in a vacuum. As mentioned above, there is
a propagating waveguide mode (AþðzÞ) and its counter-
propagating waveguide mode (A – ðzÞ) in the cavity. The
electric field distribution in the cavity is described as

½AþðzÞe – jβzz þA – ðzÞejβzz�EyðxÞ, where βz denotes the
wavevector in the z-direction. When βz ¼ mG – βz, the
two waveguide modes strongly coupled with each other.
Here the grating vector is defined as G ¼ 2π=Λ.
Considering βz ¼ 2πnef f=l0, the Bragg condition in
Eq. (1) is obtained.
If we define the two waveguide modes as aþðzÞ ¼

AþðzÞe – jΔβz and a – ðzÞ ¼ A – ðzÞejΔβz, the coupled mode
equation can be described as follows:

∂
∂z

aþðzÞ
a – ðzÞ

 !
¼ – j

Δβ κ

– κ* –Δβ

 !
aþðzÞ
a – ðzÞ

 !
, (9)

here βB ¼ mG=2, Δβ ¼ βz – βB, and κ is the coupling
coefficient. By solving the eigenvalues of Eq. (9), the
dispersion relationship of the resonant mode in the cavity is
obtained as

κ ¼ βB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δβ2 – jκj2

q
: (10)

As shown in Eq. (10), the resonant wavelength
satisfying the Bragg condition corresponds to the location
of the photonic bandgap. Therefore, the photonic bandgap
theory can predict the behavior of DFB lasers. For 2D and
3D cases, each photonic bandgap will affect the feedback
due to the extended degree of freedom [36–38].
Special materials introduced in DFB lasers can also

enrich the features, such as metallic materials [70,71,131],
flexible materials [114,132,133], and fiber tips [134]. Take
metallic materials as an example, plasmonics will improve
the laser performance significantly by carefully designing
[135–137]. Correspondingly, the related physical effect
must be considered in the theoretical model [138,139].

3.3 Fabrication of laser cavities

One of the attractive advantages of DFB lasers based on
organic materials is easy fabrication. A variety of
fabrication schemes are used to introduce the organic
materials in the DFB lasers, such as spin coating [140],

Fig. 7 (a) Schematic of DFB lasers; (b) reduced multi-layered model. L is the grating period; d is the thickness of air; t is the grating
depth; h is the gain waveguide thickness. The red curve indicates the mode profile
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nanoimprint [141–143], nanograting transfer [144], ther-
mal evaporation [144,145], horizontal dipping [146,147],
ink-jet printing [148], and drop casting [149]. Note that the
non-uniform film thickness should be considered in the last
three methods. Recently, a versatile transfer coating
method is proposed to assemble the DFB laser on arbitrary
surfaces [80,134,150].
DFB cavities can be constructed by many approaches,

such as interference lithography [44], nanoimprint litho-
graphy [151–153], photolithography [154], holographic
interference [155–157], interference ablation [158,159],
interference crosslinking [160,161], soft lithography [162],
micromolding [147,163,164], electron beam lithography
[165], and reactive ion etching [39].
The relative positions of the organic material, the DFB

cavity, and the substrate are classified into three types,
gain/cavity/substrate, cavity/gain/substrate, and active
cavity/substrate, as shown in Fig. 8. There are some
interesting differences in the laser performance of three
configurations [44,107,159]. Based on the three config-
urations, complex cavities are designed to enrich the
performance of DFB lasers, such as multilayer structures
[130,140,166].

4 Advances in DFB laser based on organic
materials

There are many excellent reviews dealing with the
advances of DFB lasers based on organic materials [167–
169]. In this paper, we will focus on some typical DFB
lasers and the latest progress. These include new config-
urations, new fabrication methods, and performance
improvements.

4.1 Lasing in 1D DFB cavities

As the most intuitive configuration, 1D DFB cavities has
been investigated extensively. A variety of 1D structures
are employed as DFB cavities, such as regular gratings
[170], Fibonacci quasi-crystals [116], chirp gratings
[35,171], beat gratings [172], and compound structures
[108,109,173].
For 1D gratings, the output direction of the laser is

related to the diffraction order followed Eq. (3). Therefore,

edge-emitting lasers and surface-emitting lasers are
achieved for the 1st order laser and the 2nd laser,
respectively [174]. For high-order lasers, oblique emitting
can be observed as shown in Fig. 9.
For DFB cavities based on Fibonacci quasi-crystals, the

lasers exhibit some intriguing features, such as directional
output independent of the emission frequency and multi-
wavelength operation [116]. All the features can be
controlled by engineering the self-similar spectrum of the
grating structure. The multi-wavelength operation is a very
attractive topic in the field of lasers, which can also be
realized in 1D DFB cavities. The main features of DFB
lasers with chirped gratings are the single mode operation
and excellent tunability [171]. The laser pattern and
number of wavelengths can be flexibly adjusted by the beat
structures consisting of several parallel gratings [172]. The
case of compound structures is subtly different, in such
cavities, ultralow thresholds can be achieved by control-
ling over the balance between feedback and output
coupling [108,173].

4.2 Lasing in 2D DFB cavities

For laser cavities based on 2D DFB structures, the
feedback is more effective. Thus, the laser performance
of 2D DFB lasers is much better than that of 1D cases, such
as thresholds, wavelength numbers, laser modes/patterns,
phase distributions, polarization, and beam divergence.
Most 2D photonic crystals are used to realized DFB lasing,
such as square lattices [111], rectangular lattices [175],
triangular lattices [114], hexagonal lattices [38], quasi-
crystals [176], fan-shaped gratings [119], circular struc-
tures [121], and spiral gratings [122].
Generally, the 2D DFB cavity provides complete 2D

feedback due to the 2nd Bragg diffraction and acts
simultaneously as an output coupler by the 1st Bragg
diffraction. Similar to the 1D cases, the balance between
feedback and coupling can be controlled by adjusting the
cavity parameters. So, the laser performance is affected by
the strength of the cavity coupling [110]. There are
numerous intriguing features in lasers with 2D DFB
cavities. The radial/azimuthal polarization of the output
beam is controlled by the parameter of square lattices
[177,178]. Multi-wavelength emissions can be easily
realized in rectangular lattices and triangular lattices

Fig. 8 Schematic of DFB lasers with different configurations. (a) Gain/cavity/substrate; (b) cavity/gain/substrate; (c) active cavity/substrate

Yulan FU et al. Distributed feedback organic lasing in photonic crystals 25



[114]. Even the continuously tunability over a wide
spectral range is achieved in fan-shaped gratings [119].
For circular cavities, the beam divergence is very small
(~10 mrad) due to the symmetry of the cavity [179].
From a wavefront manipulation point of view, the DFB

cavity can modulate the phase distribution of the emission
light. For a spiral grating as a DFB cavity, vortex lasers
with desired topological charge can be obtained by
completely controlling the phase, handedness, and degree
of helicity of the emitted beam [122]. Figure 10
demonstrates the profiles of vortex lasers generated by
spiral gratings.

4.3 Lasing in 3D DFB cavities

To date, relatively few studies have exploited the lasers
based on 3D DFB cavities. The main reason is that most
3D photonic crystals are very difficult to be realized by
micro-/nano-fabrication techniques. In this review, the 3D
DFB cavities include 3D photonic crystals and stacked
structures.
For 3D photonic crystals, lasing has been observed in

holographic photonic crystals [154], liquid crystals [180],
and opals photonic crystals [181,182]. In 3D photonic
crystals, there exist many independent laser cavities which
support multi-wavelength lasing emitted in different
directions. Note that the symmetry of quasi-crystals is
higher than that of periodic structures, which is easy to
format photonic bandgaps. Therefore, the feedback for
lasing is very efficient in quasi-crystals. Lasing has been
observed in a 3D icosahedral quasicrystal fabricated by

interference holography [183]. Multi-directional lasing is
obtained due to the symmetry of quasi-crystals, as shown
in Fig. 11.
The stacked structure consists of several 1D or 2D laser

cavities [77,130,184]. Therefore, the laser properties of the
stacked cavity are dependent on each component. For
stacked structures, there are no 3D photonic bandgaps even
considering the coupling effect.

4.4 Applications

As mentioned above, DFB cavities are the versatile
building blocks for fundamental studies in nanoscale and
potential applications. So far, many practical applications
of organic DFB lasers have been proposed. One of the
most straightforward applications is the visible light source
integrated into spectroscopic systems. In particular, the
lasers can be pumped by light-emitting diodes (LEDs) or
laser diodes (LDs) [185,186], which accords with the trend
of miniaturization of laser devices. It presents a versatile
and powerful platform for various applications.
The broadly tunable emission throughout the visible

range enables some applications in sensing [187–189],
biomarker [190,191], high-performance light sources
[192,193], on-chip communications [194,195], and optical
circuits [196,197]. For example, label-free sensing can be
achieved by a polymer DFB laser. The laser emission
wavelength shifts with the variance of the effective
refractive index modulated by the specific binding of the
analyte [187]. Moreover, a lab-on-a-chip platform is
constructed by integrating a 1st order organic DFB laser,

Fig. 9 (a) Illustration of the experimental setup and formation mechanism of the pattern of a 3rd order DFB polymer laser; the purple
spots shown in the right photograph are the reflection and diffraction of the pumping laser; (b) 2nd order laser pattern; (c) 3rd order laser
pattern; (d) 4th order laser pattern. Reproduced with permission [123]. Copyright 2019, MDPI
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Fig. 10 (a) Schematic of organic vortex laser arrays based on spiral gratings. SEM images of the center of the (b) one-arm spiral, (c) two-
arm spiral, and (d) three-arm spiral gratings. Beam profiles recorded for the beams generated using (e) circular, (f) one-arm, (g) two-arm,
and (h) three-arm spiral gratings. Reproduced with permission [122]. Copyright 2018, ACS Publishing

Fig. 11 (a) 7-beam configuration for the icosahedral quasicrystal. The upper inset denotes an icosahedral quasicrystal lattice; (b) actual
7-beam arrangement using a truncated pentagonal pyramid; (c) icosahedral quasicrystal lasing pattern projected on the back side of the
glass substrate (see lower inset). DCG is the abbreviation of the dichromate gelatin emulsions; (d) higher resolution projection of the
icosahedral quasicrystal lasing for inner region. The lines are guides to the eyes. Reproduced with permission [183]. Copyright 2009, OSA
Publishing
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deep ultraviolet induced waveguides, and a nanostructured
microfluidic channel into a poly (methyl methacrylate)
substrate.

5 Summary and outlook

In summary, DFB lasing in photonic crystals has been
extensively investigated in the past three decades.
Numerous exciting developments have taken place in the
field of DFB lasers based on organic materials. However,
from the applications-based research point of view, there
exist two limitations which baffle the marketization of such
laser devices.
The first limitation is miniaturization. One the one hand,

the size of the optical pump source is too large to integrate;
on the other hand, the electrical pumping laser remains one
of the major challenges. The challenges to be overcome
include the excited-state triplet absorption, the absorption
of metal contacts, and current densities required. In fact,
organic semiconductors have some intrinsic drawbacks,
such as low mobility and accumulated triplet states. The
settlements may require significant innovations in materi-
als science and engineering. Two feasible strategies for a
trade-off between optical pumping and electrical pumping
are indirect electrical pumping and fiber-based design. For
indirect electrical pumping, the electrically driven light
source (LEDs or LDs) is used to pump the organic
semiconductor DFB laser optically. For the fiber-based
design, the organic semiconductor DFB laser is fabricated
on the fiber facet, removing the restriction of the electrical
pumping.
The second limitation is the performance problems.

Compared with commercial lasers, the output energy of the
organic semiconductor DFB laser is relatively low, which
is attributed to the small excitation volume. The continuous
wave lasing is difficult to achieve in regular configurations.
In most cases, pulsed wave lasing is obtained due to the
long-lived triplet states. Moreover, some significant issues
remain largely unexplored, such as the frequency repeti-
tion, pulse width, stability of materials, and lifetime of
devices. Up to now, there are few researches involving the
laser modulated techniques of organic semiconductor DFB
lasers, including property manipulations and loading
information. These techniques relate to amplitude modula-
tion, intensity modulation, and phase modulation. Specific
means include the Q-switching, mode locking, and so on.
Further investigation is required to overcome the limita-
tions to significantly enhance the laser performance. New
opportunities and further progress can be expected from
developing materials and techniques specifically for
organic semiconductor DFB lasers.
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