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Abstract Optical vortices carrying orbital angular
momentum (OAM) have attracted increasing interest in
recent years. Optical vortices have seen a variety of
emerging applications in optical manipulation, optical
trapping, optical tweezers, optical vortex knots, imaging,
microscopy, sensing, metrology, quantum information
processing, and optical communications. In various optical
vortices enabled applications, the generation of multiple
optical vortices is of great importance. In this review
article, we focus on the methods of multiple optical
vortices generation and its applications. We review the
methods for generating multiple optical vortices in three
cases, i.e., 1-to-N collinear OAM modes, 1-to-N OAM
mode array and N-to-N collinear OAM modes. Diverse
applications of multiple OAM modes in optical commu-
nications and non-communication areas are presented.
Future trends, perspectives and opportunities are also
discussed.

Keywords optical communications, optical vortices,
orbital angular momentum (OAM), mode-division multi-
plexing (MDM), mode multicasting

1 Introduction

Optical vortices, also known as orbital angular momentum
(OAM) beams, have been studied for decades. It was
shown by Allen in 1992 that optical vortices comprising an
azimuthal phase term exp(ilφ), possess an OAM of lÿ per
photon, where l is referred to topological charge and φ is
azimuthal angle [1–3]. In recent years, optical vortices
have seen wide applications in different areas, such as
optical manipulation, optical trapping, optical tweezers,
optical vortex knots, imaging, microscopy, sensing,

metrology and quantum information processing [4–9].
Moreover, due to the intrinsic spatial orthogonality of
OAM modes with different topological charge numbers,
one promising prospect offered by optical vortices is in
optical communications [10]. Accordingly, a series of
research works on OAM modes multiplexing in optical
communications have been reported recently in both free
space and optical fibers [11–25].
In various optical vortices enabled applications, the

generation of multiple optical vortices is always highly
desired, such as optical communications, optical sensing
and optical measurement [26–33]. By employing multiple
optical vortices in optical communications, one can greatly
increase the transmission capacity and spectral efficiency.
However, in the conventional experiments, one element
(e.g., spiral phase plate or spatial light modulator) can only
provide one OAM mode [11], which is not scalable. The
cost and complexity of the system will rapidly grow with
the number of the optical vortices and resultant required
multiple optical elements. Thus, it is highly desirable to
develop methods for generating a large number of optical
vortices with less optical elements. Moreover, simulta-
neous generation of multiple OAM modes using a single
element from a single input Gaussian beam is also an
important basic function in an OAM multicasting system.
In this review article, we focus on the methods of

multiple optical vortices generation and its applications.
The remainder of this article is organized as follows.
Section 2 presents the methods of multiple optical vortices
generation. Section 3 focuses on the application of multiple
optical vortices. Finally, we give some brief discussions
and perspectives of multiple optical vortices.

2 Methods of multiple optical vortices
generation

Generally, there are three cases for the generation of
multiple optical vortices in different applications, which
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are summarized in Fig. 1. The first one is 1-to-N collinear
OAM modes generation. By specially designing an optical
element, one can get multiple collinear OAM modes from
a single input Gaussian mode, as shown in Fig. 1(a), which
is usually employed in OAM mode multicasting scheme.
The second one is 1-to-N OAM modes array. By inputting
a Gaussian mode, one can get multiple OAM modes with
preset different locations, which is illustrated in Fig. 1(b).
The last one is N-to-N collinear OAM modes, which is
used in OAM mode multiplexing scheme. Multiple
Gaussian modes from different locations are incident on
an optical element for generating multiple OAM modes,
which is shown in Fig. 1(c). In this section, we will
introduce multiple optical vortices generation methods for
these three cases in detail.

2.1 1-to-N collinear OAM modes

By designing sliced phase patterns, Yan et al. demonstrated
multiple collinear OAM modes generation with a spatial
light modulator (SLM) [34]. Moreover, they also experi-
mentally demonstrated data-carrying multicasting five and
seven OAM channels from a single-input OAM channel.
The approach is illustrated in Fig. 2. It has been shown that
an angular amplitude aperture of central angle q with M-
fold rotational symmetry can distribute energy from the
input OAM beam of charge l to multiple OAM beams
having equally spaced OAM charge number of {…, – kM
+ l,…, –M+ l, l,M+ l,…, kM + l,… } (k is an integer).
Note that in the first row of Fig. 2, the aperture’s
transmission part has a constant phase value b0, which
results in a sinc2-like OAM charge spectrum, centered at
input OAM charge l. In the second row of Fig. 2, the
aperture’s transmission part is complementary to that of the
first aperture, and it produces a sinc2-like OAM charge
spectrum centered at l - 6. In the last row, the sliced phase
pattern can be viewed as the superposition of the

transmission parts of the above two amplitude-phase
apertures. As a result, the output spectrum of the sliced
phase pattern is a coherent addition of those two previous
output spectra. The parameter b0 is optimized such that
most of the multicasting OAM channels have equalized
power except for the two channels at the wings of the
spectrum. By using this approach, 7 equally spaced OAM
modes are successfully generated. The experimental results
are shown in Fig. 3. By using a pattern of more slices,
seven OAM channels (l = 6, 9, 12, 15, 18, 21, 24) are
generated in the experiment. The phase pattern consists of
three sliced regions, where there are two parameters, b1
and b2, to be optimized to equalize the power of the
multicasting channels. The intensity patterns of before
multicasting OAM mode and after multicasting OAM
modes are shown in Fig. 3(a). Figure 3(b) illustrates the
power distribution after multicasting.
By using the above method, one can only generate

equally spaced OAM modes. However, in many applica-
tions, it is also important to generate randomly spaced
OAM modes. For the simultaneous generation of n OAM
modes fl1,l2,:::,lng, the mathematical description of the
desired transmission function can be expressed as

f ðφÞ ¼
Xn
m¼1

Alm   expðilmφÞ, (1)

where the complex number fAlmg comprises the weight

coefficients. Normally f ðφÞ is a complex form, including
both amplitude and phase. To make it simplified, our work
focuses on how to reduce the complex form to a phase-
only function with tolerable loss in efficiency. The phase-
only approximate function can be defined as gðφÞ ¼
exp½ifðφÞ� with the phase function

fðφÞ ¼ Re – iln
Xn
m¼1

Blm   expðilmφÞ
" #( )

: (2)

Fig. 1 Schematic illustration of multiple optical vortices generation. (a) 1-to-N collinear OAMmodes; (b) 1-to-N OAMmodes array; (c)
N-to-N collinear OAM modes
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In Eq. (2), Re{ } means “real part of,” and Blm is a

decisive factor for fðφÞ. Discarding the imaginary part of
the right-hand side of Eq. (2) is equivalent to setting
amplitude to unity, which ensures gðφÞ is a phase-only
function. Expand gðφÞ in Fourier series:

gðφÞ ¼
X1

m¼ –1
CmexpðimφÞ, (3)

where the decomposition coefficient is Cm ¼ 1

2π
!

2π

0
gðφÞ

�expð – imφÞdφ. To achieve high efficiency, the phase-
only function gðφÞ and the original function f ðφÞ should be
with little difference. To evaluate the difference, we
introduce a parameter of relative root-mean-square error
(R-RMSE):

R –RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

m¼1
ðjClm j

2 – jAlm j
2Þ2

n
Xn

m¼1
jClm j

2

vuut : (4)

The smaller of the R-RMSE, the better performance of
the phase-only element we can achieve.
Since the weight coefficients fAlmg is settled at first, the

parameter R-RMSE is determined by fClmg or fBlmg.
Then it becomes a simple minimization problem. We need
to find the suitable fBlmg for minimizing R-RMSE. To

solve the problem, Lin et al. proposed an iterative
algorithm, which is a spontaneous optimization algorithm
[35]. It is a highly effective method for generating multiple
OAM modes with a single phase-only element. However,
when we use this method to generate more than 10 OAM
modes, the performance of the algorithm gets worse,
mainly because the initial set of parameters fB0

lm
g are set

equal to fAlmg. The unsuitable choice of fB
0
lm
g will lead to

immature convergence of the iterative algorithm.
Based on the iterative algorithm, our group proposes a

pattern search assisted iterative (PSI) algorithm to
simultaneously generate multiple OAM modes using a

Fig. 2 Multiple OAM modes generation using an all-phase pattern with a combination of two amplitudes and a sliced phase pattern.
Left: input OAM state spectrum; middle: amplitude and phase patterns for multicasting; right: generated OAM spectrum [34]

Fig. 3 Experimental results of the generated 7 equally spaced OAM modes. (a) Left: the intensity of the input OAM beam; middle: the
phase pattern for multicasting; right: the intensity of the beam after multicasting; (b) theoretical and experimental results of the OAM
charge spectrum after multicasting [34]
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single phase-only element [36]. The PSI algorithm shows a
favorable operation performance for generating 100
randomly spaced OAM modes with high diffraction
efficiency (> 93%), low R-RMSE and low standard
deviation. Figure 4 shows the simulation results of the
generated randomly spaced 100 OAM modes by PSI
algorithm.
Moreover, we study the convergence of the PSI

algorithm. The iterative process in the PSI algorithm is
convergent. Figure 5 shows the convergence curves of R-
RMSE. Figure 5(a) shows the R-RMSE convergence curve
for generating 20 randomly spaced equal-power OAM
modes. One can easily see from the curve that the R-RMSE
is convergent after 65 iterations. The R-RMSE conver-
gence curve for generating 50 randomly spaced equal-
power OAM modes is depicted in Fig. 5(b). One can also
clearly see that the R-RMSE is convergent after 91
iterations.

To evaluate the algorithm under a more realistic
scenario, we study the performance of the phase patterns
loaded onto the practical SLM. Here, we take commer-
cially available Holoeye PLUTO phase only SLM as an
example. The resolution of the SLM is 1920 ´1080 pixels
with 256 gray levels covering 0 – 2p phase modulation. By
using the PSI algorithm, we get realistic SLM phase
patterns for generating 20 randomly spaced equal-power
OAM modes. The phase pattern loaded onto SLM has
1080 ´1080 pixels with 256 gray levels, which is shown in
Fig. 6(a). We then compare the performance of the realistic
SLM phase pattern for generating OAM modes. The
simulation results of the OAM spectra are depicted in
Fig. 6(b). The OAM spectra of the original phase patterns
(i.e., no consideration of realistic SLM) using PSI
algorithm is also shown for reference. Figure 6(b) shows
the OAM spectra of the original phase pattern (blue one)
and realistic SLM phase pattern (red one) using the PSI

Fig. 4 Simulation results of 100 randomly spaced OAM modes with topological charge {± 1,± 5,± 8,± 14,± 15,± 17,± 19,± 21,± 25,
± 26,± 27,± 28,± 29,± 31,± 37,± 38,± 41,± 42,± 43,± 44,± 46,± 47,± 48,± 49,± 50,± 52,± 53,± 56,± 58,± 59,± 61,± 63,± 64,± 67,± 73,
± 76,± 79,± 80,± 81,± 83,± 84,± 87,± 88,± 89,± 90,± 93,± 94,± 97,± 98,± 100}. (a) 100 OAMmodes spectrum by PSI algorithm; (b) phase
pattern for generating 100 OAM modes by PSI algorithm [36]

Fig. 5 R-RMSE convergence curves of PSI algorithm. (a) Convergence curve for generating 20 randomly spaced equal-power OAM
modes; (b) convergence curve for generating 50 randomly spaced equal-power OAM modes [36]
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algorithm. By comparing the simulation results shown in
Fig. 6(b), one can see that the performance of realistic SLM
phase pattern is slightly degraded compared with the
original phase pattern.
In addition, we can also manipulate the relative power

distribution of the generated OAM modes simply by
setting the initial weight coefficients in the PSI algorithm.
The simulation results of power manipulation of OAM
modes are shown in Fig. 7.
Moreover, one can use SLMs to fully control the

amplitude and phase of the input light beam, which could
also be employed for the generation of multiple optical
vortices. In 2014, our group proposes a simple method to
arbitrarily manipulate the amplitude and phase of the
incoming light beam with two phase-only SLMs without
using any phase iterative algorithm [37]. The concept and
principle are illustrated in Fig. 8(a). We set the polarization
direction of the input light A0 45° with respect to the x
direction. The working direction of polarization-dependent
SLM1 is x direction with a phase distribution φ1ðx,yÞ. After
the SLM1, the light is half modulated, with the x direction

distribution

ffiffiffi
2

p

2
A0expðiφ1ðx,yÞÞ and y direction distribu-

tion

ffiffiffi
2

p

2
A0. And then, the light beam passes through a

polarizer with the polarization direction 45° deviation from
the x direction. Thus, the electrical field of light beam
becomes

Eðx,yÞ ¼
ffiffiffi
2

p

2
A0 �expðiφ1ðx,yÞÞ � ffiffiffi

2
p

2
þ

ffiffiffi
2

p

2
A0 �

ffiffiffi
2

p

2

�

¼ 1

2
A0ðexpðiφ1ðx,yÞÞ þ 1Þ: (5)

After the polarizer, the light comes through the
SLM2 with a phase distribution φ2ðx,yÞ. The working
direction of polarization-dependent SLM2 keeps the same
as the light polarization after the polarizer, which is
actually enabled by adjusting the light polarization after the
polarizer via a half-wave plate placed between the
polarizer and SLM2. So the electrical field of light after

Fig. 6 (a) Phase patterns loaded onto practical SLM for generating 20 randomly spaced OAM modes with topological charge {5, 7, 8,
14, 17, 21, 25, 28, 29, 31, 33, 37, 38, 41, 42, 45, 46, 47, 48, 49} by PSI algorithm, respectively; (b) OAM spectra of the original phase
pattern (blue) and realistic SLM phase pattern (red) by PSI algorithm, respectively [36]

Fig. 7 Simulation results of weight manipulation of 50 OAM modes with topological charge {10, 15, 20,…, 255}. (a) Target spectrum;
(b) spectrum by PSI algorithm [36]
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the SLM2 becomes

Eðx,yÞ ¼ 1

2
A0ðexpðiφ1ðx,yÞÞ þ 1Þexpðiφ2ðx,yÞÞ

¼ A0cos
φ1ðx,yÞ

2

� �
exp i

φ1ðx,yÞ þ 2φ2ðx,yÞ
2

� �
:

(6)

From Eq. (6), one can easily find that the amplitude
distribution is determined by φ1ðx,yÞ, and the phase

distribution is determined by
1

2
φ1ðx,yÞ þ φ2ðx,yÞ. Hence,

by changing the phase distribution patterns written onto the
SLM1 and SLM2, we can manipulate the amplitude and
phase independently at the same time. By using this
method, we show the successful generation of multiple
collinear OAM modes. The theoretical and experimental
results are shown in Fig. 8(b). In addition, we can
arbitrarily generate different types of light beams as
desired, such as Laguerre-Gaussian (LG) beams and
Bessel beams. Figure 9 shows the intensity distributions
of the generated LG beams and Bessel beams. The
obtained results shown in Fig. 9 indicate the feasibility
of arbitrary manipulation of amplitude and phase using the
proposed approaches.

2.2 1-to-N OAM mode array

OAMmode array has found its applications in many areas,
such as optical manipulation, three-dimensional scanning
interferometry, and quantum processing. In 2010, Moreno
et al. employed Dammann vortex grating for OAM mode
array generation [38]. By combining Dammann grating
with vortex phase distribution, one can get 1D Dammann
vortex grating, as shown in Fig. 10(a). 2D Dammann
gratings is formed by multiplying the 1D Dammann
vortex grating by a 90° rotated version, which is shown in
Fig. 10(c). By using Dammann vortex grating, 7 ´7 OAM
mode array is successfully generated.
By employing the above method, the same group

fabricates 2D Dammann grating for generating 25 OAM
modes using UV lithography technique [39]. The micro-
scopic images of the fabricated grating are shown in
Figs. 11(a) and 11(b). The intensity distributions of
generated OAM modes by the 2D Dammann grating are
shown in Figs. 11(c) – 11(f).
Besides, our group presents a simple and compact on-

chip OAM mode array emitter on silicon photonics
platforms [40]. The principle relies on three-plane-wave
interference. We design, fabricate and demonstrate an on-
chip OAM mode array emitter consisting of three parallel

Fig. 8 (a) Concept and principle of arbitrary manipulation of spatial amplitude and phase distribution; (b) theoretical and experimental
results of multiple OAM modes generation with two phase-only SLMs [37]
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waveguides with etched tilt gratings, as shown in Fig. 12.
The tilt gratings facilitate flexible light emission in a wide
range of directions, enabling the generation of OAM mode
array above the silicon chip. The OAM mode array is also
known as optical vortex (OV) lattice.
The fabricated on-chip OV lattice emitter is experimen-

tally investigated. The experimental configuration for
observing the on-chip generation of the OV lattice is
illustrated in Fig. 13(a). Figure 13(b) shows the measured
near-field intensity distribution of y-polarization light with
10° magnification coming out from the OV lattice emitter
at the wavelength of 1550 nm. One can clearly see the three
bright light spots emitted from the three tilt gratings. Figure
13(c) plots the measured far-field intensity distribution of
y-polarization light with 40° magnification generated from
the on-chip OV lattice emitter, which indicates the
phenomenon of three-plane-wave interference and a
network of dark spots. When interfering the generated
OV lattice in Fig. 13(d) with another plane wave, there
emerges a network of fork-like fringe patterns. One can
indicate from Figs. 13(c) and 13(d) that each fork-like
fringe pattern corresponds to a dark spot, verifying the

successful generation of the OV lattice using the designed
and fabricated compact on-chip OV lattice emitter.

2.3 N-to-N collinear OAM modes

N Gaussian modes from different angles are incident on
optical element for generating N collinear OAM modes,
which is always demanded in OAM mode multiplexing
scheme. Here we introduce two methods for N-to-N

Fig. 9 Intensity profiles of the generated LG and Bessel modes by manipulating the amplitude and phase independently with two phase-
only SLMs [37]

Fig. 10 (a) 1D and (c) 2D Dammann vortex gratings with (b) and
(d) corresponding results [38]

Fig. 11 (a) and (b) Center portion and typical outer areas of the
fabricated Dammann vortex grating; (c) –(f) OAM detection
results using the fabricated Dammann vortex grating. The
topological charges of the input OAM are (c) 0, (d) - 2, (e) - 7
and (f) 12, and the labels show the detection orders [39]
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Fig. 12 (a) Concept and (b) –(d) simulation results of on-chip OAM mode array emitter on silicon platform [40]

Fig. 13 (a) Experimental configuration for observing the generation of an OV lattice using the fabricated on-chip OV lattice emitter;
(b) measured near-field intensity distribution of y-polarization light coming out from the emitter; (c) measured far-field intensity
distribution of an OV lattice generated by the emitter. The inset shows the zoom-in intensity distribution of OVs; (d) measured intensity
distribution of fork-like fringe patterns by interfering the generated OV lattice with a plane wave. The inset shows the zoom-in intensity
distribution of fork-like fringe patterns [40]
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collinear OAM modes.
The first one is to use Dammann vortex grating, which is

the same with the previous section. Figure 14 shows a
schematic of the Dammann vortex grating enabled multi-
ple collinear OAM modes generation and multiplexing
[41]. Gaussian beams with plane wavefronts are incident
on the Dammann vortex grating at the angles of its
diffraction orders. Therefore, along the zeroth order of
diffraction, all the incident Gaussian beams are trans-
formed into different OAM modes in the same direction.
Moreover, one can also use Dammann vortex grating
for OAM modes demultiplexing which is also shown in
Fig. 14.
By using Dammann vortex grating, Lei et al. demon-

strate independent collinear OAM channel generation,
transmission and simultaneous detection [41]. 80 Tbit/s

transmission capacity is achieved with uniform power
distributions along all channels, with 1600 individually
modulated QPSK/16-QAM data channels multiplexed by
10 OAM states, 80 wavelengths and two polarizations. The
experimental results are shown in Fig. 15.
The second method is well-known as the OAM mode

sorter, which is used to sort different OAM modes by two
static optical elements [42–44]. The OAM mode sorter
performs a log-polar to Cartesian coordinate transforma-
tion, which can convert the helically phased OAM beam
into a beam with a transverse phase gradient. Then, a
subsequent lens focuses each input OAM state to a
different lateral position, as shown in Fig. 16 [45]. By
using the OAMmode sorter, Nmultiplexed collinear OAM
modes each with a different topological charge, can be
transformed into N laterally separated and elongated spots.

Fig. 14 Schematic of the Dammann vortex grating for multiple collinear OAM modes generation. (a) Gaussian beams incident on the
grating at its diffraction angles; (b) Combined coaxial OAM beam with multiple states (b1) propagates in free space. (b2, b3) The
simulated intensity pattern and wavefront of the OAM beam, respectively; (c) OAM channels are converted into Gaussian beams and are
separated spatially for detection [41]

Fig. 15 Experimental results of OAM-based free-space optical communications. (a) Spectra of the OAM states+ 27 and+ 29 with the
80-wavelength WDM system; (b) optical signal-to-noise ratio (OSNR) penalties of the 10 OAM states; (c) bit-error rate (BER)
characteristics in the same OAM channel (l = -15) for the 10 different wavelength channels [41]
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Importantly, when the OAM mode sorter is used in the
reverse direction, N laterally separated and elongated spots
can generate N collinear OAM modes, which can be used
for OAM mode multiplexing. By employing OAM mode
sorter, OAM modes multiplexing transmission is experi-
mentally demonstrated. The experimental results of multi-
ple OAM modes generation with OAM mode sorter are
shown in Fig. 17.

3 Applications of multiple optical vortices

Multiple optical vortices are usually employed in optical

communications. The generation of multiple OAM modes
using a single element from a single input Gaussian beam
is an important basic function in an OAM mode multi-
casting system. By using the proposed PSI algorithm, our
group experimentally demonstrates 1-to-34 multicasting of
an optical signal from single Gaussian mode to multiple
OAM modes [46]. All 34-fold multicasted OAM channels
show relatively low crosstalk (< -10 dB) from their
neighboring OAM modes and achieve BER less than
2e – 3. The concept and OAMmode spectrum are shown in
Fig. 18.
Moreover, by designing and optimizing the complex

phase pattern through the adaptive correction of feedback

Fig. 16 Schematic of OAM mode sorter for OAM modes multiplexing and demultiplexing [45]

Fig. 17 Experimental results of multiple OAM modes generation with OAM mode sorter. (a1) –(c1) Intensity profiles of OAM modes
generated by the OAM mode sorter; (a2) –(c2) “spiral” interferograms of each OAM mode; (a3) –(c3) OAM power spectra of each OAM
mode [45]
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system, the power of each multicasting OAM channel can
be arbitrarily controlled. We experimentally demonstrate
power-controllable multicasting from a single Gaussian
mode to 6 OAM modes with different target power
distributions [47]. The concept and experimental results
are shown in Fig. 19.
In addition, we also demonstrate OAM mode multi-

casting under atmospheric turbulence condition. By
employing an adaptive optics closed loop consisting of a
wavefront detector and a wavefront corrector, we can
successfully compensate the phase distortions [48]. The
compensation can reduce power fluctuations of multi-
casted OAM channels and inter-channel power crosstalk,
achieving a favorable communication performance. The
concept and experimental results are shown in Fig. 20.
High-order Bessel beams are considered as a typical

kind of light beam that can carry OAM. Remarkably,

Bessel beam is widely known as a self-reconstructing light
beam, which can reconstruct its electric field after passing
through an obstruction. By using the proposed phase
pattern designed by PSI algorithm combining with axicon
phase distribution, our group reports data multicasting
from a single Gaussian mode to multiple Bessel modes
using a single phase-only spatial light modulator [49].
Under the obstructed path conditions, obstruction-free
data-carrying N-fold Bessel modes multicasting is also
demonstrated in the experiment. The experimental setup
and results are shown in Fig. 21.
Besides optical communication applications, multiple

optical vortices can also be used in non-communication
areas. In 2014, Lavery et al. observed the rotational
Doppler shift from a white-light source after backscattered
by a spinning object [31]. They show that the magnitude of
this shift is dependent upon the OAM of the light, and that

Fig. 18 Concept and experimental results of 1-to-34 OAM mode multicasting. (a) Concept and principle of 1-to-34 OAM mode
multicasting; (b) measured OAM spectrum of all the multicasted OAMmodes; (c) mode crosstalk of all the multicasted OAMmodes [46]
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Fig. 19 (a) Concept, (b) and (c) experimental results of power-controllable OAM mode multicasting [47]

Fig. 20 (a) Concept and principle of turbulence compensation for a distorted OAMmulticasting link; (b) measured OAM spectrum of all
the multicasted OAM modes without turbulence; (c) measured OAM spectrum of all the multicasted OAM modes with turbulence;
(d) measured OAM spectrum of all the multicasted OAM modes with turbulence-induced distortion compensation [48]
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superposition of different OAM states gives rise to
multiple sidebands on the shifted frequency. The observa-
bility of the frequency shift for white-light illumination
highlights the potential of this rotational Doppler effect as
the basis of a rotational sensor using back-scattered light.
Figure 22 shows the experimental setup and measured
results.

4 Trends, perspectives and challenges

In recent years, multiple optical vortices have shown great
potential in optical communication systems. In this article,
we review the methods of multiple optical vortices
generation and its emerging applications. Different
methods have been employed for multiple optical vortices

Fig. 21 (a) Experimental setup of obstruction-free data-carrying N-fold Bessel modes multicasting; (b) measured Bessel modes
spectrum with and without obstruction; (c) measured BER performance of Bessel modes multicasting [49]

Fig. 22 (a) Experimental setup and (b) measured results of the rotational Doppler shift from a white-light source after backscattered by a
spinning object. The SLM is encoded with a specific pattern to produce the superposition of different OAM states [31]
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generation, such as PSI algorithm, Dammann vortex
grating, and OAM mode sorter. The experimental results
show favorable performance in different applications.
Figure 23 shows the trends, perspectives and opportunities
of multiple optical vortices generation. In this review, we
only introduce the generation of multiple OAM modes.
However, other mode bases, such as LG modes, Hermite-
Gaussian (HG) modes, Bessel modes and vector modes
may also be desired in practical applications [50–63].
Diverse methods for the generation of multiple other mode
bases are of great interest. Moreover, in the existing
experiments, SLM is usually employed to control the input
spatial light for generating multiple OAM modes. With
future improvement, photonic integrated devices on
different platforms (e.g., silicon platform) may also be
designed and fabricated, which will make the system much
more compact, flexible and low cost. Additionally,
metamaterials and metasurfaces could also be employed
to manipulate the spatial structure of light beams, which
will extend the applications of multiple optical vortices and
multiple other spatial modes [64–71].
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