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Abstract In this paper, the recent progress on spectrally
efficient single carrier (SC) 400G optical signal transmis-
sion was summarized. By using quadrature phase shift
keying (QPSK), 16 quadrature amplitude modulation
(16QAM) and 64QAM, we can realize transmission
distance over 10000, 6000 and 3000 km, respectively,
with large area fiber and all-Raman amplification. To
improve the system performance and generate high-order
QAM, advanced digital signal processing algorithms such
as probabilistic shaping and look-up table pre-distortion
are employed to improve the transmission performance.
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1 Introduction

Due to the increasing bandwidth requirement of video
traffic, cloud computing and mobile data, the bandwidth of
optical network grows at a rate of about 2 dB per year [1].
High-speed coherent optical communication [2—6] is a
good solution to meet the bandwidth requirement and is
developing rapidly [7-9]. In fact, the deployment of single
carrier (SC) 100G coherent communication system from
the laboratory to the real network spent less than five years
[7]. At present, 100G has been widely deployed, and the
demand of meeting rapidly increased bandwidth require-
ment by SC 400G is urgent [10-17]. A lot of high-speed
experimental results on SC 1 Tb/s have also been reported
[18-23]. Different from the widely employed SC 100G
polarization multiplexing quadrature phase shift keying
(PM-QPSK) modulation, SC 400G will have a difficult
choice because the bandwidth of the current optical and
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electrical devices is not enough for SC 400G PM-QPSK
modulation. If SC 400G also adopts PM-QPSK modula-
tion and coherent detection, its baud rate will reach 128
Gbaud or higher [14]. Current optical and electrical
devices at this baud rate are not mature and very expensive.
Similarly to 100G system, the spectral efficiency can only
reach 2 b/s/Hz, which means that the transmission capacity
is not increased [14]. For the SC 400G transmission
system, we have to use high-level modulation formats to
increase the spectral efficiency and the transmission
capacity [12,15,18-26]. In this way, we also reduce the
baud rate of the optical signals and thus reduce the required
bandwidth of optical and electrical devices. For example,
the required baud rate for employing 8 quadrature
amplitude modulation (8QAM), 16QAM or 64QAM is
reduced to be ~80, 60 and 40 Gbaud, respectively [27]. But
the advanced QAM requires a higher optical signal-to-
noise ratio (OSNR). For example, 16QAM needs an
additional OSNR of 3 dB compared to QPSK signals,
which results in a transmission distance of only ~50% of
QPSK [28]. So that the transmission distance will be
shorter and may not meet the requirement of long-distance
transmission. The recently researched geometrical shaping,
probabilistic shaping and other advanced digital signal
processing (DSP) technologies can greatly extend the
transmission distance, and transmission capacity can be
closer to the Shannon limit because of the optimized
probabilitic or geometric distribution of signal constella-
tion [29-39]. In addition, small-loss large-area fiber and
Raman amplification can also be adopted to extend the
transmission distance [14,31].

2 High baud rate transmission

Historically, to use high baud rate to increase the signal bit
rate of each channel is an effective and popular way [40].
Adopting high baud rate can realize high-speed transmis-
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sion for each single channel, thus we can reduce the
channel numbers in wavelength division multiplexing
(WDM) systems and reduce the maintenance cost of
optical transmission networks. To achieve high baud rate
signal generation, electrical time division multiplexing
(ETDM) technology [11-15] or high-speed sampling rate
digital analog converter (DAC) [16—19] can be employed.
Thanks to ETDM technology, over 100 Gbaud signal
generation and transmission has been realized [11-15]. In
our previous work, we demonstrated the generation and
over terrestrial distance (tens of thousands of kilometers)
optical fiber transmission of 128.8 Gbaud PM-QPSK
signal [14]. The experimental setup and eye diagram for
128.8 Gbaud signal is shown in Fig. 1(a). Here we generate
two pairs of 128.8-Gbaud in-phase (I) and quadrature (Q)
data by three-stage all-ETDM blocks with 2:1, 4:1, and 2:1
electrical multiplexing ratios, from 8.05-Gbaud binary
pseudo-random binary sequence (PRBS) signals. We can
see the quite clear electrical eye diagram of the 128.8-
Gbaud binary signal shown as inset (i) in Fig. 1(a).
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Recently, we have also reported the wavelength division
multiplexing transmission of 120 Gbaud ETDM polariza-
tion multiplexing 16QAM optical signal [15]. The
experimental setup and eye diagram is shown in Fig. 1(b).
The four pairs of 120-Gbaud I and Q 4-level pulse-
amplitude-modulation (PAM-4) signals are also produced
through three stages of ETDM with a combination of two
120-Gbaud NRZ signals. Like the QPSK signal generation,
we first produce the 120-Gbaud binary signals from the 7.5-
Gbaud PRBS using the cascade of 2:1, 4:1, and 2:1 electrical
multiplexers. Then, we generate the four-level signals by
using an electrical combiner on two de-correlated 120-Gb/s
binary signals. When combined, one path is first reduced by
one half of its amplitude with a 6-dB attenuator. All the
signals for ETDM are de-correlated by an applied delay.
In these two demonstrations, the employed 4:1 Mux is a
56-Gb/s 4:1 broadband multiplexer module, while the
second 2:1 Mux is a 120-Gb/s 2:1 broadband multiplexer
module. The obtained output of the 4:1 Mux has the peak-to-
peak value ¥, of 500 mV and the output of the second 2:1
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Transmitter setup of (a) 128.8-Gbaud polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signals,

and (b) 120-Gbaud PDM-16QAM signals generated by ETDM methods; Mod: modulator, AWG: arrayed waveguide grating, Pol:
polarization, Mux: electrical multiplexer; PM-OC: polarization-maintaining optical coupler; WSS: wavelength-selective switch; EDFA:

Erbium-doped fiber amplifier
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Mux has the V,, of 400 mV, while the 4-level signal has the
Vpp 0f ~300 mV. We can see that the electrical eye diagrams
of 60- and 120-Gbaud binary signals are still quite clear as
insets (ii) and (iii) in Fig. 1(b). However, the eye-diagram
quality of generated four-level signal as inset (iv) is very low,
which is due to the bandwidth limitation of the combiner. By
using a 100 GSa/s DAC, a recorded 100 Gbaud polarization
multiplexing 64QAM signal has been generated and
transmitted over hundreds of kilometers optical fiber [18].
The bandwidth limitation of electrical multiplexer, DAC or
other optical/electrical components can be compensated at
the transmitter or receiver by DSP with pre- or post-
equalization [41-51]. For high baud rate signal generation
based on ETDM, partial response maximum likelihood
sequence estimation at the receiver can greatly improve the
system performance by eliminating narrow-band filtering
effect caused by photoelectric device bandwidth limitations
[46,48-51]. Experimental results show that we can employ
pre-equalization [46] and look-up-table (LUT) pre-distortion
[27] to overcome the nonlinear effects caused by DAC and
other optical/electrical devices.

3 High-level QAM modulation

High speed signal transmission can be achieved by
adopting high baud rate and high-level QAM modulation
[9,28]. The advantage of using high-level QAM modula-
tion is to reduce baud rate and improve spectral efficiency.
However, high-level QAM requires more complex DSP at
the coherent receiver. In addition, high-level QAM
requires higher OSNR, narrower laser linewidth and better
linearity of optoelectronic devices [24]. The nonlinearity
caused by optical and electrical devices and optical fibers
can also be compensated by means of DSP. In Ref. [24], we
first realized the generation and coherent detection of the
SC 400G polarization multiplexing 256QAM signal.

Figure 2 shows the experimental setup for the SC PM-
256QAM signal generation. The transmitter includes an
external cavity laser (ECL) with a narrow linewidth of 400
Hz, an optical I/Q modulator with bandwidth of 30 GHz,
two parallel 30-GHz electrical drivers, an 80-GSa/s DAC
with analog bandwidth of around 20 GHz, and an optical
polarization multiplexer. The receiver consists of an
integrated coherent receiver (ICR) with 40-GHz balanced
photo-detectors and a 160-GSa/s ADC. The inset in Fig. 2
shows a measured eye diagram of the generated 30-GBd
PAM-16 (I-path) at the DAC output. The DSP at the
receiver includes front-end correction, squaring time
recovery, a fast-converging polarization-tracking 77/2-
spaced equalizer, carry phase recovery using blind phase
search (BPS) algorithm with 64 divided phases, a T-spaced
decision-directed least mean square (DD-LMS) post
equalizer, and LUT generation for nonlinear pre- and
post-compensation [14].

In the DSP part, a fast-converging polarization-blind
equalizer is updated in two steps as illustrated in Fig. 3.
The error function of the first tracking decision-directed
constant modulus algorithm (DD-CMA) step is governed
by both CMA and DD-LMS algorithm inside the same
loop, enabling faster convergence speed and lower mean
square error (MSE) than those with standalone CMA/
MMA/DD-LMS algorithms, while the second step uses
enhanced DD-LMS to minimize the MSE. The insets (a)
and (b) in Fig. 3 display the x-pol constellation diagrams of
the 30-GBd PM-256QAM signal with 35-dB ONSR after
the 1st and 2nd steps of the 7/2-spaced equalization. In
addition, as illustrated in Fig. 2, an estimated inverse
channel response for pre-equalization at the Tx can be
derived from the above mentioned 7/2-spaced equaliza-
tion. A subsequent 7T-spaced post DD-LMS equalizer was
used to precisely match the channel response within the
Nyquist band to provide valuable processing gain. To
overcome the nonlinearity-induced pattern-dependent
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Fig. 2 Experimental setup for the proposed PM-256QAM SC-400G generation, and key enabling Tx and Rx DSP algorithms



18 Front. Optoelectron. 2019, 12(1): 15-23

|

by P20

quadrature
=

|
h,
v
X

4 y .
—-rcal
2t - imag

0.5

symbol distortion
=

quadrature
(=}

701000 2000 3000 4000
pattern index

(e)

|
o4
n

-1.0

y
h Fany _isf3
x = > 7 (k i
& -~ B -15-10 =5 0
in-phase
= = (@)
Ist step: DD-CMA

-1.0 -05 0 05 10
in-phase

(©

e (k) = ey oma (k) T ey gy(B)] +
Tl ama® + ey 40

quadrature

2nd step: enhanced DD-LMS

“w O w

|
—
o

e(k)=2X [ex,i wk) e a ()]

|
=

symbol distortion

-4
0 05 1.0 15 20 25
pattern index X 10¢

®

symbol distortion

-15-10 =5 0
in-phase

(®)

10 15 -10 -05 0 05 1.0 o

05 10 15 20 25
in-phase pattern index X 10*
(d (2

Fig. 3 Conceptual diagram of a two-step polarization-tracking blind equalizer, and the received constellations and LUT

symbol distortion, LUT with various memory lengths are
established for the incoming I and Q symbols in each
polarization, respectively, and can be used for DPD at the
Tx [2]. The insets (¢) and (f) in Fig. 3 shows the obtained x-
pol LUTs with memory lengths of 3 and 13 symbols,
respectively, which were trained by 295k symbols obtained
at the output of the 7T-spaced post equalizer.

At present, transmission of 4096QAM, the highest-order
QAM adopted, has been demonstrated although the bit rate
is only ~80 Gbit/s [52].

4 New fiber and amplification technology

The transmission performance of optical signals in optical
fiber is mainly affected by loss, dispersion and nonlinear-
ity. Optical fiber dispersion can be effectively compensated
by DSP in coherent optical communication system. The
loss of the C-band signal in the standard single-mode fiber
is about 0.2 dB/km, and the total loss is 20 dB after 100 km
fiber transmission [14]. To reduce loss and improve OSNR
after transmission, new ultra-low-loss fiber has been
introduced. Now the minimum loss of optical fiber can
be about 0.14 dB/km, and the loss accumulated after 100
km fiber transmission is only about 13 dB, which reduces 6
dB loss compared with standard single-mode fiber. In
addition, by increasing the area of the optical fiber and
reducing the optical power per unit area, the nonlinear
effect in the optical fiber is also reduced. The current
optical fiber effective area can be greater than 150 um?. For
nonlinear effects such as self-phase modulation, cross-
phase modulation, and four-wave mixing in optical fibers,
we can use decentralized optical amplification, such as

Raman amplification. Unlike Erbium doped fiber amplifier
(EDFA) which adopts lumped optical amplification, the
optical power of the signal in the fiber (close to the EDFA)
can be reduced to mitigate the nonlinear effect. At present,
long-distance transmission records are basically realized
on Raman amplification. If the digital signal processing
algorithm is adopted at the receiving end, the influence of
the nonlinear effect in the optical fiber can be further
reduced [24,53—-58]. But the current algorithm is complex
and cannot be practically realized, and thus further
research is required.

5 Advanced DSP

Signal shaping, which can be divided into geometrical
shaping (GS) and probabilistic shaping (PS) [30-39], has
become the most popular DSP in the past few years. Since
the birth of the information theory, decreasing the gap
between the capacity of communication systems and the
Shannon limit has become an eternal topic [37]. As a
typical modulation format optimization technique, GS
technique aims to shape the position distribution of the
constellation points of the modulation format, which uses a
non-uniformly spaced constellation to obtain a larger
minimum Euclidean distance and thereby makes the
transmission capacity closer to the Shannon limit. In the
PS technique, however, a power-efficient probability
distribution is used on the uniformly spaced constellation
points [37]. PS is a very important method in additive
white Gaussian noise (AWGN) channels, which can reduce
the transmission power by matching the symbols with
lower amplitude to a greater probability than those with
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higher amplitude. Although this non-uniform probability
distribution will reduce the source entropy of the
transmitter, i.e., the average bits each symbol is mapped
to, the power saving is enough to compensate for the bit
rate loss. In addition, the resistance to noise can be
improved by increasing the Euclidean distance at a fixed
power.

The advantage of PS over GS is that it does not require a
change in the modulator structure, so it is easier to be
implemented in terms of practicality. This is especially
important for optical communication systems because the
optical modulator and DAC operate at very high frequen-
cies and it is really difficult to generate non-uniform
constellation points in the complex plane due to limited
linearity or effective number of bits (ENoB) in DAC.
What’s more, the results of the AWGN channel cannot be
directly used in optical communication systems because
nonlinear interference depends on the power and distribu-
tion of the input signal in optical fiber links which limits the
maximum achievable signal to noise ratio for the channel.
In thus, rather than systems with fixed noise power and
signal power, we prefer to focus on distribution of the
optical constellation and the transmission power that can
enable maximum mutual information for a fixed transmis-
sion distance. In the long-distance coherent optical fiber
links, noise accumulation and crosstalk caused by non-
linearity are the main issues to be considered. Not only
accumulated in all optical devices and fiber spans,
nonlinearity noise can also be caused by crosstalk between
polarizations and adjacent channels in the transmission
links. The principle of PS is to transmit signals with
different amplitude using non-uniform probabilities, which
means the low-level signals with lower power are delivered
more often than those high-level signals with higher power.

For a fixed transmission entropy, the optimal distribution
to minimize the average transmission energy is to make the
constellation points subject to the Maxwell Boltzmann
distribution, which can achieve the maximum information
rate in an AWGN channel. In general, when the
constellation points obey the Maxwell Boltzmann dis-
tribution, a shaping gain (or sensitivity gain) of 1.53 dB
can be achieved in each dimension [35,39]. Non-uniform
signal generation mechanisms can be implemented by
mapping a simple variable-length prefix to the constella-
tion [59,60].

Figure 4 shows graphical illustration of probabilities for
PS-64-QAM. The histogram height represents the prob-
ability of modulation symbols. With the help of low-
density parity-check code (LDPC) which can correct
mapping and channel error, shaped constellation shows
better performance than regular constellation. With the
same effective bit rate, the system transmission distance
can be increased by 7% (16QAM). At the transmitter, the
ECL uses Nyquist shaping symbol modulation, and the
transmitted sequence uses Huffman coding to achieve
probabilistic shaping. After transmitted through the noise
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Fig. 4 Graphical illustration of probabilities for PS-64-QAM

channel, optical signals are received by the standard
coherent optical receiver, and then the electrical signal is
sampled by an ADC. The latter DSP include standard
synchronization algorithms (blind equalization and data
assisted phase recovery) and error-correction-magnitude
(EVM) estimation. The system design is very flexible and
does not require additional implementation complexity.
The most critical step is to introduce a distribution matcher
(DM) that generates non-uniformly distributed modulation
symbol streams from the data stream.

The PS mapping and de-mapping is shown in Fig. 5.
Based on different OSNR, different probabilities can be
assigned to each modulation symbol [59,60]. The key
setup is a distribution matcher that converts the data bit
stream into non-uniformly distributed constellation sym-
bols. The shaped symbols are represented by binary labels
and encoded by a binary forward-error-correction (FEC)
encoder, and the system maintains the distribution of the
shaped symbols. The output of the FEC encoder is mapped
into a QAM complex symbol sequence, which is then input
into the optical transmission system and outputs a QAM
complex symbol sequence with noise. The demodulator
inputs these noisy sequences to the FEC decoder to
compute the bit-log-likelihood ratio. The decoded symbols
are converted into data bits by a distribution de-matcher.
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Fig. 5 Diagram of the PS mapping and de-mapping
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6 Recorded transmission results

Probabilistic shaping technology can be adopted to
enhance the transmission distance greatly. Recently, we
have realized a recorded transmission distance of 6000-km
by using probabilistic shaped 16QAM modulation [30]. It
refreshes the record of the distance of the terrestrial
transmission for 400G SC data. A serial of new
technologies and new devices, including high-sensitivity
probabilistic shaping, pre/post-equalization, low-power
small-size high-bandwidth coherent driver modulation
module and large-caliber low-attenuation TeraWave™
fiber, are employed in this experiment. The experimental
setup is shown in Fig. 6. In the transmission experiment, a
6000 + km transmission of probabilistically shaped single-
carrier 506 Gb/s PDM-16QAM signal with 75 GHz
channel spacing has been realized. The achieved spectral
efficiency is up to 5.3 b/s/Hz. Compared with the case
without probabilistic shaping technology, the transmission
distance has been increased by 60% after using probabil-
istic shaping technology.

Moreover, the effectiveness of the probabilistic shaping
technology to high-level QAM is more obvious than low-
level QAM. We also realized a long-distance transmission
of SC 400-G 64-QAM signal by using the probabilistic
shaping technology. In the transmission experiment, the
transmission of 8-channel (50 GHz channel spacing) 528-
Gb/s single-carrier PM-64QAM signal is realized success-
fully. The I and Q component of the PM-64QAM signals
are generated by an integrated high-speed DAC. To
generate the I and Q signals, two independent data are
first mapped into 64QAM symbols and pre-emphasis and
pre-equalization processing are performed. Here pre-
emphasis processing is used to mitigate the nonlinear effect
of the I/Q modulator. It can properly extend the middle
layer in the 64QAM symbols to avoid the signal distortion
which is induced by the nonlinear effect of the modulator.
Pre-equalization is used to compensate the linear distortion
of the modulator by using digital filter. The linear distortion
is induced by the high-frequency attenuation effect of the
modulator and electrical amplifier. The taps of the digital
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filter are obtained by inversing the channel response which
is measured when the available bandwidth of the signal is
up to 62.5 Gbaud at a high OSNR without fiber. The
sampling rate of the DAC is set at 80 GSa/s, and the
bandwidth of the DAC is 20 GHz. When PS technology is
not applied, the baud rate of the generated 64QAM signal is
44 Gbaud and its corresponding data rate is 528 Gb/s.
When PS with 5.75 bit/symbol entropy is applied, the raw
baud rate of the signal is 46.272 Gbaud, the net baud rate of
the signal is 44.344 Gbaud and its corresponding bitrate is
532.128 Gb/s. When PS with 5.5 bit/symbol entropy is
applied, the raw baud rate of the signal is 48.125 Gbaud, the
net baud rate of the signal is 44.114 Gbaud and its
corresponding bitrate is 529.375 Gb/s.

The odd and even channels passed through a WSS and
combined again. The frequency interval of odd or even
channel before WSS is 100 GHz, and the frequency
spacing of odd or even channel after WSS is 50 GHz.
Raman amplification (Raman) is used for optical amplifi-
cation. The fiber loop consists of 4x100 km OFS large
effective area fiber (TeraWave SLA +). The effective area
of the OFS fiber is about 122 um?, and the attenuation
coefficient of the fiber is 0.185 dB/km, and the dispersion
coefficient of the fiber is 20.0 ps/(nm-km). A 60-GHz
tunable optical filter is used to choose the measured
channel from the WDM signals. The coherent receiver
adopts an ICR with 65-GHz 3-dB bandwidth. The line
width of the local oscillator (LO) is less than 100 kHz. The
signals after coherent receiver are recorded by 160-GSa/s
sampling-rate, 60-GHz 3-dB bandwidth oscilloscope, and
then the captured signals are processed by offline digital
signal processing. Figure 7 shows the relation between the
bit-error ratio (BER) and transmission distance. When the
transmitted optical power is set at 8 dBm, it can be found
that the performance of the PM-64QAM-PS 5.5 and the
PM-64QAM-PS 5.75 are almost the same. They both can
achieve a 2400 km transmission with BER below 2.4x 102
and can achieve a 3200 km transmission with BER below
5x1072. When PS is not applied, the maximum transmis-
sion distance is only 2000 km. The PS technology helps to
increase the transmission distance by 60%.

coherent receiver 1160 GSals

w0 FRIXL,
: optical [ 1 1| &
hybrid [P 2
0C TOF 00 FEX =
H . —¥ =
ic S tnerd B ol )
------------------- LO H — H

Fig. 6 Experimental setup. ECL: external cavity laser, OC: optical coupler, TOF: tunable optical filter, WSS: wavelength selective
switch, DAC: digital to analog convertor, EA: electrical amplifier, ATT: attenuator
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7 Conclusions

The progress of SC 400G coherent detection based on DSP
is moving very fast. We have adopted these advanced

technologies to achieve transmission records of 10000 km
of 400G SC PM-QPSK signals, 6000 km of SC PM-

16QAM signals, and 3000 km of SC PM-64QAM signal

transmissions. In these transmission systems, we use the
baud rate of the signal up to 128.8 Gbaud and the high-
order QAM up to PM-256QAM. We use low-loss large-
area fibers, Raman amplification and several advanced
digital signal processing technologies for coherent detec-
tion including PS to extend the transmission distance
effectively.
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