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Abstract In this paper, we propose a photonic crystal
fiber (PCF) polarization filter based on surface plasmon
resonance (SPR) characteristics. Gold nanowire is used as
the active plasmonic material. Light into silica core
becomes coupled to gold nanowire stimulating SPR. It
splits light into two orthogonal (x-polarization and y-
polarization) polarization in the second order of surface
plasmon polarization. Numerical investigations of the
proposed PCF filter is finite element method (FEM). By
tuning the diameter of gold nanowire and shifting their
position, the performance of the proposed PCF filter is
inspected rigorously. Filtering of any polarization can be
obtained by properly placing the metal wires. The
maximum confinement loss of x-polarization is 692.25
dB/cm and y-polarization is 1.13 dB/cm offers at resonance
position 1.42 µm. Such a confinement loss difference
between two orthogonal polarizations makes PCF a
talented candidate to filter devices. Consequently, the
recommended PCF structure is useful for polarization
device.

Keywords photonic crystal fiber (PCF), surface plasmon
resonance (SPR), perfectly match layer, polarization filter

1 Introduction

Photonic crystal fiber (PCF) is also known as micro-
structure lattice in which silica is a background material
[1,2]. First PCF was expanded from the fiber drawing
tower in Knight et al. [3] and it has been concerned to the

field of optical communication. Tunable dispersion, high
nonlinearity, flexible design and high birefringence are
matchless characteristics compared to the conventional
optical fiber. It has been broadly used in many fields such
as chemistry, medicine and biology for its convenient
characteristics [4]. When light is propagates in a PCF
through metal layer, the free electrons in the metal will take
up the power of the light. The light signal in silica core
couples with surface plasmon polaritons (SPPs). When
their phases are same, surface plasmon resonance (SPR)
happens [5]. The amalgamation of PCF and plasmonics is a
promising research field in the area of light science.
Remarkably, the polarization filter has been a major
element of communication system. PCF filters are applied
widely in sensing applications as a polarizer and fiber tools
[6–16]. In 1993, Jorgenson and Yee [12] invented a PCF
which encouraged SPP modes. Nagasaki et al. [13]
accomplished a large polarization extinction ratio (ER)
by proposing a polarization filter by carefully filling metal
wires in the cladding region of PCF. Zi et al. [14] proposed
a PCF polarization filter in which communication
wavelengths was 1310 and 1550 nm by applying two
gold coated air holes [10]. Zhang et al. have initially
revealed that selective metal coating in the PCF is
practicable [11]. Zhang et al. expressed an optical fiber
which takes up polarizer by choosing coating metal on the
surface of air hole [17]. Li and Zhao have established the
operating wavelengths of optical polarizer and can be
modulated by adjusting the air hole size [18]. So
geometrical parameters of the PCF have been carefully
optimized to create the loss of one polarization mode
which is much larger than another polarized mode [19]. In
this paper, we got maximum loss in x-polarization is
692.25 dB/cm and minimum loss in y-polarization is 1.13
dB/cm at the resonance position 1.42 µm.
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2 Design and numerical method

The cross segment view of the designed PCF is shown in
Fig. 1. The asymmetric PCF is modified by varying the air
holes arrangement. The gold coated air holes for the PCF
filter can divide the resonance point of x-polarization and
y-polarization. The thickness of gold layer can also
influence the resonance strength and resonance wave-
length. The resonance strength becomes weak as the
coating layer is thicker. The birefringence of the proposed
PCF is high and light can be divided into two orthogonal
polarized modes. The proposed PCF constructed of three
sizes circular shape air hole. The diameter of most common
air holes is denoted by d2, the diameter of most large air
hole near the PCF core is denoted by d1. The diameter of
gold coated air holes which are placed in the horizontal
direction is denoted by d and the thickness of gold layer is
denoted by dg. The distance between two nearby air holes
is denoted by L.
The background material of the PCF is fused silica,

whose refractive index is computed by the Sellmeier
equation [20],

n2ðωÞ ¼ 1þ
X3

j¼1

Bjωj

ω2
j

, (1)

where Bj represents the jth resonance strength, and ωj

represents the resonance frequency. The Sellmeier constant
are B1= 0.6961663, B2= 0.4079426, B3= 0.8974794, l1=
0.0684043, l2= 0.1162414, l3= 9.896161 and where lj=
2πc/ωj. To achieve optimum calculation, the dispersion of
gold is also calculated and the dielectric constant of gold is
considered by using Drude–Lorentz model [21],
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ω2
D
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where the high frequency dielectric constant is ε1 =
5.9673; weighted coefficient is Δε = 1.09; optical angular
frequency is ω; plasmon frequency is ωD, damping
frequency is γD; ωD/2π = 2113.6 THz; γD/2π = 15.92
THz; the oscillator strength is ωL, the frequency spectrum
width is GL and WL/2π = 650.07 THz, and GL/2π = 104.86
THz respectively.

3 Numerical simulation and discussion

All investigation is done through COMSOL Multiphy-
sics® version 4.2. Finite element method (FEM) is used to
compute the numerical characteristics of the PCF. In this
proposed PCF, we used gold as the active plasmonic
material. Core mode will couple with the SPP mode when
their transmission constants are same. The electric field
distribution of the PCF in Fig. 2(a) shows the coupling
mode of third order SPP and core mode, Fig. 2(b)
represents x-polarization of SPP mode, Fig. 2(c) illustrates
x-polarization of core mode, Fig. 2(d) shows y-polarization
of core mode.
To attain better coupling phenomenon between SPP

mode and core mode, couple mode theory is considered.
The couple mode theory equations are expresses as follows
(Eqs. (3) and (4)) and it is followed by the standard article
[22],

dE1

dz
¼ iβ1E1 þ ikE2, (3)

dE2

dz
¼ iβ2E2 þ ikE1: (4)

Fig. 1 Model of the proposed PCF coated with gold

Fig. 2 Dispersion of electric field. (a) Coupled mode between the
core mode and second order SPP mode; (b) x-polarization of SPP
mode; (c) x-polarization of core mode; (d) y-polarization of core
mode at resonance position 1.42
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Here, b1 and b2 are the propagation constants of core
mode and SPP mode, E1 is electric field mode of core
mode, E2 is the electric field mode of SPP mode, z and k are
the coupling propagation and strength length respectively.
b is the propagation constant of the coupling mode. E1 and
E2 can be described as E1 = Aexp(ibz) and E2 = Bexp(ibz).
We can get b from Eqs. (3) and (4),

β� ¼ βave �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ k2

p
: (5)

Here, d = (b1 – b2)/2, bave = (b1 + b2)/2. For the core
mode and SPP mode, b1 and b2 are complex and d can be
written as d = dr + idi. The real part of transmission
constants for SPP mode and core mode are same if the
phase matching condition is fulfilled. For this, dr = 0 and
get d2 + k2 = – di2 + k. When di> k, the real parts of b+
and b – are equal, the imaginary parts of b+ and b – are
different, an incomplete coupling will occur. When di< k,
the real parts of b+ and b – are different and imaginary
parts are same then a complete coupling will occur.
The loss and refractive index dispersion graph are shown

in Fig. 3(a) with the parameter d = 0.9 µm, d1= 1.1 µm, d2=
0.7 µm, d3= 0.5 µm, and dg= 20 nm when coupling takes
place between core mode and SPP mode at the resonance
position 1.42 µm. It can be clearly observed that effective
refractive index curve of SPP and core mode of x-
polarization intersects at 1.42 µm. In addition, the peak
loss is 692.25 dB/cm and 1.13 dB/cm for x-polarization and
y-polarization respectively. As the gold layer is in x-
direction and couple with core mode which progresses the
peak loss of x-polarization. The peak loss of x-polarization
is much higher than the peak loss of y-polarization which is
comparable with Ref. [23]. This filtering phenomenon can
also be described by refractive index graph. It can be seen
that the refractive index graph of core mode of x-
polarization has an instant change at resonance position
1.42 µm when coupling occurs between second order SPP

mode and core mode. Figure 3(b) shows the loss relation of
the SPP mode and the core mode of x-polarization. The SPP
mode and core mode have same peak loss at the resonance
position 1.42 µm when coupling happens. The loss of SPP
mode gradually decreases and the loss of core mode(x-
polarization) gradually increases. Finally, both (SPP and x-
polarization) get the same value at resonance position. The
loss of core mode of x-polarization achieves the maximum
while the loss of SPP mode reaches the minimum. As a
result a complete coupling happens and energy is transfer
between second order SPP and core mode.
Figure 4 represents the confinement loss and refractive

index dispersion of the proposed PCF with different
thickness of gold layer dg= 15 nm, dg = 20 nm and dg = 25
nm dependent on wavelength. Figure 4(a) shows that the
peak loss of x-polarization is 633.35, 692.25 and 596.13
dB/cm at resonance position 1.41, 1.42 and 1.44 μm,
respectively but the peak loss of y-polarization is 1.67, 1.13
and 1.78 dB/cm. As with the change of dg, the refractive
index and peak loss is also changed. We consider dg= 20
nm because the peak loss difference between x-polarization
(692.25 dB/cm) and y-polarization (1.13 dB/cm) is
maximum. So we obtain highest confinement loss is
692.25 dB/cm for x-polarization and lowest confinement
loss is 1.13 dB/cm for y-polarization which is comparable
with Ref. [24]. Figure 4(b) shows that the refractive index
curve of y-polarization has no change but in x-polarization
is a sudden alternation at the resonance position 1.41, 1.42,
and 1.43 µm for coupling happens between core mode and
SPP mode.
Figure 5 shows the loss and dispersion of the refractive

index with different thickness of d1= 1.0 µm, d1= 0.9 µm,
d1= 0.8 µm with the function of wavelength. Figure 5(a)
shows that the peak loss of x-polarization are 582.34,
692.25 and 600.09 dB/cm at resonance position 1.4, 1.42,
1.43 respectively but the loss in y-polarization is 1.83,

Fig. 3 (a) Loss and dispersion of the designed PCF with the parameter d = 0.9 µm, d1= 1.1 µm, d2= 0.7 µm, d3= 0.5 µm, and dg= 20 nm
at the wavelength of 1.42 µm. (b) Loss curve when coupling occurs between core mode and SPP mode with the parameter d = 1.1 µm, d1=
0.9 µm, d2= 0.7 µm, d3= 0.5 µm, and dg= 20 nm at the wavelength of 1.42 µm
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1.13, 1.54 dB/cm. We got maximum loss in x-polarization
is 692.25 dB/cm and minimum loss in y-polarization is
1.13 dB/cm at the resonance position 1.42 µm which is
comparable with Ref. [25]. The loss intensity of x-
polarized core mode suddenly increases because coupling
happened at 1.42 µm when d1= 0.9 µm. Figure 5(b) shows
the effective refractive index of x-polarization has a sudden
change at resonance position 1.4, 1.42 and 1.43 µm but in
y-polarization is almost same.
Figure 6 shows the refractive index dispersion and loss

with different diameter of d3= 0.5 µm and d3= 0.0 (absent)
with the variation of wavelength. Figure 6(a) shows the
peak loss of x-polarization is 692.25 and 872.13 dB/cm at
resonance position 1.42 and 1.44 µm but loss in y-
polarization is 1.13, 1.93 dB/cm. We cannot take the
confinement loss of x-polarization is 872.13 dB/cm

because coupling wavelength is 1.42 µm. Figure 6(b)
shows the effective refractive index of y-polarization is
almost same but in x-polarization has a sudden change at
resonance position 1.42 and 1.44 µm.
From Fig. 7, we regain that the crosstalk peaks enlarge

repeatedly by the increase of fiber length. Here we just talk
about the result at the resonance position. The value of
crosstalk is 1393, 1790 and 1984 dB at the resonance
position 1.42 when the fiber length is 0.5, 1.0 and 1.5 mm
respectively.
On top of the discussion, we get the peak loss of

x-polarization is 692.25 dB/cm and y-polarization is
1.13 dB/cm. The proposed PCF filter has advantages in
terms of ease and fabrication is also simple. The fabrication
of the proposed PCF can be attained by stack and draw
method in fiber drawing tower with suitable temperature

Fig. 5 (a) Loss of proposed PCF dependent on wavelength with different thickness of d1= 1.0, 0.9, 0.8 µm and parameter d = 1.1 µm,
d2= 0.7 µm, d3= 0.5 µm, and dg= 20 nm. (b) Dispersion of refractive index with the variation of wavelength and different diameter of d1=
1.0, 0.9 µm, 0.8 µm

Fig. 4 (a) Loss of proposed PCF with the variation of wavelength and different thickness of gold layer dg= 15, 20, 25 nm. (b) Refractive
index dispersion as a function of wavelength with dg= 15, 20, 25 nm
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management. Using chemical vapor deposition technology
with force supported or spray technology, the coating of
gold film can be attained. Finally, in order to corroborate
the methodical authenticity of our work, we contrast the
results with the SPR based PCF filters previously stated in
Table 1.
A PCF filter based on SPR is reported [26] where peak

loss is 508 dB/cm in the y-polarized direction. Since the
thickness of gold is 40 nm so it is fabrication is expensive.
Reference [27] has proposed a PCF filter which peak loss is
292.8 dB/cm at the wavelengths of 1.55 mm in y-
polarization and peak loss 4.6 dB/cm in x-polarization.
The difference of losses between two orthogonal polariza-
tions is too small. Another filter [28] is proposed where
they used different sizes air holes which is very difficult to
fabricate. A filter which used a single gold coated air hole
[29] which cannot create strong coupling. In this paper, we
proposed a simple asymmetric PCF filter which very easy
to fabricate and the loss difference between two orthogonal
polarizations is high shown in Table 1.

Fig. 6 (a) Optimization loss of the designed PCF with wavelength at d3= 0.5, 0.0 µm (absent). (b) Dispersion with the variation of
wavelength with d3= 0.5, 0.0 µm (absent)

Fig. 7 Crosstalk of the proposed PCF when the fiber length of
0.5, 1.0, 1.5 mm with parameters d = 1.1 µm, d1= 0.9 µm, d2= 0.7
µm, d3= 0.5 µm, and dg= 20 nm

Table 1 Comparison with SPR based proposed PCF filter with previously published filters

PCF filter bandwidth
/nm

resonance
wavelength

resonance strength
(dB$cm–1)

extinction (L = 1 nm)/dB structural diagram

Ref. [26] 20 1.31 µm (y-pol) 508.00
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4 Conclusion

In summary, a gold coated PCF polarization filter is
proposed. Second order of SPP mode is stimulated owing
to gold layer. Finally second order of SPP mode and core
mode of x-polarization produce coupling altogether. The
peak loss of x-polarization is 692.25 dB/cm due to the gold
coated air holes are in x-direction. Besides, peak loss of y-
polarization is 1.13 dB/cm. The peak loss in x-polarization
is higher while the peak loss in y-polarization is too small.
In addition, the difference of peak loss between two
orthogonal polarizations is a phenomenon of good
filtering.
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