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Abstract A fast and effective shape reconstruction
method of large aspheric specular surfaces with high
order terms is proposed in fringe reflection technique,
which combines modal estimation with high-order finite-
difference algorithm. The iterative equation with high-
order truncation errors is derived for calculating the
specular surface with large aperture based on high-order
finite-difference algorithm. To achieve the wavefront
estimation and improve convergence speed, the numerical
orthogonal transformation method based on Zernike
polynomials is implemented to obtain the initial iteration
value. The reconstruction results of simulated surface
identified the advantages of the proposed method.
Furthermore, a freeform in illuminating system has been
used to demonstrate the validity of the improved method in
practical measurement. The results show that the proposed
method has the advantages of making the reconstruction of
different shape apertures accurate and rapid. In general,
this method performs well in measuring large complex
objects with high frequency information in practical
measurement.

Keywords shape reconstruction, fringe reflection techni-
que, Zernike orthogonal transformation, finite difference,
measurement

1 Introduction

The core idea in fringe reflection technique is that
mirroring patterns are distorted depending on the shape
of the object [1], providing a direct measurement of
discrete slope variations [2]. A process to reconstruct the

surface shape from the gradient data are consequently
required. Huang et al. [3] divided the integration methods
into three categories. The first category is the finite-
difference based least-squares integration (FLI) methods.
The zonal reconstruction approach with three different
kinds of grid sampling configurations [4–6] are common
types. To reconstruct the high order components for
improving accuracy, Huang and Asundi [7] used an
iterative compensation algorithm and Li et al. [8] applied
the high-order finite-difference algorithm in the Southwell
grid. Zhou et al. [2] combined the Legendre polynomials
method and Southwell zonal reconstruction (SZR) algo-
rithm to improve the convergent speed. The second
category of integration methods is the transform-based
integration (TI) methods. The discrete Fourier transform
[9,10] and discrete cosine transform-based methods [3]
were employed to reconstruct the wavefront by integrating
the multiple directional derivatives. The integration from
only one partial derivative in the Fourier domain is simple
and fast with the priori knowledge of the characteristics of
the test object [11]. The third one is the radial basis
function based integration (RBFI) method. Besides, Ettl et
al. [12] introduced an integration method by employing the
radial basis functions, and Bon et al. [13] proposed a
boundary Fourier integration method by simply padding
slope matrices with positive or negative slope values.
Traditional cross-path integration is easy to implement and
very efficient in computing speed [14] with relatively low
accuracy. Recently, we presented a quality map path
integration method [15], which reconstructs the surface by
using a quality map to guide the path integration. It should
be noted that the high-order finite-difference algorithm is
usually used to achieve the reconstruction for optical
surface with higher than third-order terms. The iterative
equations are derived by us considering the computational
memory for large aspheric surface. However, the conver-
gence for computing height from a large data sets is very
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slow, and the stability is poor in conditions of strong noise.
In this paper, we concentrate on an improved method

with fast speed and high accuracy in practical measurement
of fringe reflection technique over different apertures and
shapes. The orthogonal polynomials based on Zernike
polynomials are used here to calculate the initial height of
iterative process. Thus the proposed method combined the
advantages of both modal and zonal estimation
approaches, making it possible to reconstruct the surface
shape with high convergent speed. Meanwhile, it can
handle the surfaces with different shape apertures. The rest
of paper is organized as follows. Section 2 illustrates the
principle of traditional reconstruction method and the
proposed method. In Section 3, reconstruction simulations
with different apertures and shape are conducted, and the
performance of the presented method is discussed,
demonstrated and verified by examples. Section 4 shows
the results of experiment about a freeform surface in
illuminating system. Section 5 concludes the work.

2 Reconstruction method

Wavefront reconstruction of surface shape from slopes is a
mathematical integration process. First, it is necessary to
recall the traditional least-squares integration with South-
well grid model. Then, we propose a method combined the
zonal reconstruction method and modal estimation, which

performs well in large optical surface with high-order
terms.

2.1 Traditional reconstruction algorithm over large optical
surface

The appropriate grid pattern for reconstructing the
wavefront from the local slopes was first introduced by
Southwell. Southwell’s zonal wavefront reconstruction
algorithm is based on the assumption that the points for
height estimation are at the same locations of those whose
gradient data has been measured out. The relationship
between slope and shape can be expressed as

piþ1,j þ pi,j
2

¼ ziþ1,j – zi,j
b

, i ¼ 1,2,:::,M – 1; j ¼ 1,2,:::,N ,

qi,jþ1 þ qi,j
2

¼ zi,jþ1 – zi,j
b

, i ¼ 1,2,:::,M ; j ¼ 1,2,:::,N – 1,

8><
>:

(1)

where zi,j represents the height value at point (i, j), b is the
distance between two adjacent grid points,M and N are the
number of the grid points in the x and y directions.
Furthermore, Eq. (1) can be rewritten in terms of matrices
as
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Therefore, the least-squares norm solution can be
obtained by Eq. (4):

Z ¼ DþG, (4)

where D+ is the generalized inverse matrix of D and is a
sparse matrix. When the matrix size is smaller, Eq. (4) can
achieve the height information quickly and precisely. But it
will take up large amounts of memory when the matrix size
is larger. So an iteration strategy is used to handle larger
matrix based on Eq. (4), which is described as

zðmþ1Þ
i,j ¼ zðmÞi,j þ bi,j=gi,j, (5)

where

zi,j ¼ ðziþ1,j þ zi – 1,j þ zi,jþ1 þ zi,j – 1Þ=gi,j,
bi,j ¼ ðpiþ1,j – pi – 1,j þ qi,jþ1 – qi,j – 1Þb=2, (6)

where z̅i,j(m) is the nearest-neighbor height average after
the mth iteration and bi,j is a constant depending only on
the gradient measurement data. zi,j

(m+ 1) is the height value
after (m + 1)th iteration; The factor gi,j is either two, three,
or four according to whether its corresponding reconstruc-
tion height zi,j is on a corner, an edge, or an interior
reconstruction point. At the boundary, the corresponding
values of height and slope element are assumed to be zero
and the negative of the adjacent slope respectively. By
utilizing the iterative method, the slopes can be integrated
to give the surface map of the tested object.

2.2 Improved reconstruction method for large optical
surface with high-order terms

The zonal wavefront reconstruction approach shows slow
convergence when dealing with large gradient measure-
ments, even the reconstruction process might fail because
the gradient measurements are much smaller than the
corresponding height values. Therefore, a rapid and
accurate reconstruction method over large specular surface
with high-order items is proposed as follows. The
proposed method uses the height information calculated
by orthogonal Zernike polynomials as initial iteration
values first, and then achieves the reconstruction by
iteration process based on high-order finite-difference
method. Our method aims to combine the advantage of
orthogonal Zernike polynomials and high-order finite-
difference method, making it possible to reconstruct the 3-
D shape of large surfaces with high-order items accurately
and rapidly.
Li et al. [8] proposed high-order finite-difference method

based on the Taylor theorem to derive the integration
equations with different truncation errors. It is considered
that the integration equations with smaller truncation errors
will improve the reconstruction accuracy. The iteration
equations are derived by us in this section. The height

information can be acquired as
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13h
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And the Simpson integration equations were obtained
from the head and the end of each row and each column as

zi,jþ2 – zi,j ¼
h

3
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� �
,

i ¼ 1,2,:::,N ; j ¼ 1,N – 2,
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h

3
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� �
,

i ¼ 1,N – 2; j ¼ 1,2,:::,N : (8)

The coefficient matrix composed of Eqs. (7) and (8) is
sparse matrix, and the calculation will be harder with the
increasing size of slope data. Therefore, we proposed the
iteration equation based on Eqs. (7) and (8), which can be
applied in conditions of handling large data sets. They can
be rewritten

zi,j ¼ zi,j þ ci,j, (9)

where z̅i,j and ci,j of Eq. (9) are derived as Eqs. (10) and
(11), respectively.

z1ji,j ¼
1

4
ðzi,j – 1 þ zi,jþ1 þ zi – 1,j þ ziþ1,jÞ,

c1ji,j ¼
13h

96
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�

þ 12

13
ðpi,j – 1 þ pi,jþ1 þ qi – 1,j þ qiþ1,jÞ

þ 2ðpi,j þ qi,jÞ  �, (10)

z2ji,j ¼ ðzi,j – 2 þ zi,jþ2 þ zi – 2,j þ ziþ2,jÞ=gi,j,

c2ji,j ¼ 4ðpi,j – 1 þ pi,jþ1 þ qi – 1,j þ qiþ1,jÞ=gi,j, (11)

where gi,j is the same factor in Eq. (5). Therefore, higher
order integration method can be transformed in iteration
expression at the mth iteration:
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zðmþ1Þ
i,j ¼ zðmÞi,j þ ci,j, (12)

where z̅i,j
(m) is the height average after themth iteration, and

zi,j
(m+ 1) is the height value after (m + 1)th iteration. The

successive over-relaxation (SOR) method is adopted
during the process of iteration, and Eq. (12) can be written
by introducing the relaxation parameter w:

zðmþ1Þ
i,j ¼ zðmÞi,j þ ω zðmÞi,j þ ci,j – z

ðmÞ
i,j

h i
, (13)

where w is the relaxation factor to reduce the approxima-
tion error faster and is usually chosen as [2]

ω  ¼  
2

1þ sin½π=ðN þ 1Þ�: (14)

However, the convergence for the iteration process from
a large or strongly curved gradient field is very slow.
Considering the acceleration of online processing speed,
numerical orthogonal gradient and surface polynomials
based on Zernike polynomials [16] are used to calculate the
initial value here, which can be employed in the wavefront
estimation over different shaped apertures. The freeform
surface can be expressed based on Zernike circle
polynomials as

Flðx,yÞ ¼
XJ
j¼1

CljZjðx,yÞ, (15)

where Fl(x,y) is freeform surface, Clj is the transform
coefficient and J is the number of Zernike circle
polynomials denoted by Z. The partial derivatives of
Fl(x,y) in x and y directions are

Fx
l ¼

∂Flðx,yÞ
∂x

¼
XJ
j¼1

Clj
∂Zjðx,yÞ

∂x
¼
XJ
j¼1

CljZ
x
j ,

Fy
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∂Flðx,yÞ
∂y

¼
XJ
j¼1

Clj
∂Zjðx,yÞ

∂y
¼
XJ
j¼1

CljZ
y
j : (16)

The first term of Zernike polynomials is constant, then
both the first term of Fl

x, Fl
y are zeros. Fl

x, Fl
y are used as

numerical basis functions to construct the numerical
orthogonal gradient polynomials except the first terms:

Gx
i ¼

XJ
j¼2

DilF
x
l , G

y
i ¼

XJ
j¼2

DilF
y
l : (17)

The basis function of freeform surface and gradient data
can be expressed:

~F ¼ Fx

Fy

 !
¼ Zx

Zy

 !
MT ¼ ~Z ~M

T
,

~G ¼ Gx

Gy

 !
¼

~F
x

~F
y

 !
MT ¼ ~FDT, (18)

where ~M
T
, DT are transposed transformation matrix, and

they can be obtained by Gram-Schmidt orthogonal
method:

M ¼ ðQTÞ – 1, D ¼ ðRTÞ – 1, (19)

where

QTQ ¼ ZTZ=N , RTR ¼ ~F
T~F=ðN þ NÞ, (20)

where N is the number of data points. In practical
measurement, the coefficient matrix α can be calculated
based on basis functions in Eq. (18), which can be
expressed as

α ¼
Gx

Gy

 ! – 1

P, (21)

where P is the slope data obtained in the measurement.
Then the coefficient matrix β is

β ¼ DTα̂: (22)

3 Simulations

We will perform the shape reconstruction simulations of
three different objects to prove the validity of modal
wavefront estimation, iterative high-order finite-difference
method and our proposed method. The first simulation is
used to demonstrate the performance of modal wavefront
estimation over different shape apertures, and the second
simulation is used to demonstrate the accuracy and speed
of high-order finite-difference method. The last simulation
demonstrates the advantage of our proposed method on the
accuracy and calculating time.

3.1 Reconstruction of hexagon optical surface by orthogonal
Zernike polynomials

Consider a freeform surface with hexagon aperture to be
measured that is expressed as

zðx,yÞ ¼ 0:5x2 – 0:3  �2ð1 – xÞ2e – x2 – ðyþ1Þ2

– 10
x

5
– x3 – y5

� 	
e – x

2 – y2 þ 1

3
e – ðxþ1Þ2 – y2  �: (23)

The range of x and y are set to be [ – 1, 1] mm and the
matrix size is set 500 pixel� 500 pixel. The simulated data
are filtered from the rectangular aperture. The surface
shape and slope data are shown in Figs. 1 and 2. Gaussian
noise with SNR (signal to noise ratio) = 30 in the slope data
are added. Reconstruction error map by Legendre poly-
nomials and orthogonal Zernike polynomials are shown in
Fig. 3.
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Peak-valley (PV) value and root-mean-square (RMS)
value of error by orthogonal Zernike polynomials are 4.50
and 0.01 mm, respectively. And PVand RMS by Legendre
polynomials are 90 and 8.2 mm. It is clear that when
orthogonal Zernike polynomials are applied to the same
gradient data with hexagon aperture, the reconstruction
shape of high accuracy was achieved, which was much
better than the result of Legendre polynomials.

3.2 Reconstruction of freeform surface with high-order
terms by iterative high finite-difference method

The freeform surface under simulation is expressed as

z ¼ 0:3cosð0:4x2 þ 2xÞcosð0:4y2 þ 2yÞ

þ 0:7cos½ðx3 þ y2Þ=ð4πÞ�: (24)

The range of x and y are set to be [ – 5, 5] mm and the
sample intervals are 0.02 mm. The slope data are shown in
Fig. 4. Reconstruction error map by Southwell method,
Huang’s [7] and iterative high-order finite-difference
method are shown in Fig. 5. The corresponding PV
value, RMS value and calculating time are listed in
Table 1. The results show that iterative high finite-
difference method has the highest accuracy, and cost less
time than Huang’s method.

3.3 Reconstruction of large matrix with high order items

The surface in simulation is an optical surface with high
order items as shown

Fig. 1 Surface map of arbitrary surface

Fig. 2 Slope map of arbitrary surface in (a) x and (b) y direction

Fig. 3 Reconstruction error by (a) Legendre polynomials and (b) orthogonal Zernike polynomials
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Fig. 4 Slope map of freeform surface in (a) x and (b) y direction

Fig. 5 Error map by (a) Southwell method, (b) Huang’s and (c) iterative high-order finite-difference method

Table 1 Analysis of 3D reconstruction results with three methods

reconstruction method PV/mm RMS/mm time/s

Southwell iteration 8.4 4.4 125

Huang’s 8.68 � 10–1 9.72 � 10–2 152

iterative high finite-difference 3.3 � 10–1 9 � 10–2 128
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z x,yð Þ ¼ 3  ð1 – xÞ2e – x2 – ðyþ1Þ2 – 10
x

5
– x3 – y5

� 	
e – x

2 – y2

–
1

3
  e – ðxþ1Þ2 – y2 : (25)

The range of x and y are set -5 to 5 mm and the matrix
size is set 1000 pixel � 1000 pixel. The shape of these
tested surfaces are shown in Fig. 6. Normally distributed
noise with SNR = 30 is added to the ideal slopes. The
performance about computing time and accuracy using
different methods is shown in Table 2. The RMS and PV
values of errors characterize the accuracy of reconstructed
surface. The error maps are shown in Fig. 7. The arbitrary
surface was reconstructed by Southwell iteration method,
Zhou’s, Huang’s, high-order finite-difference method and
our method.

We noticed that Zhou’s method performs better in
computing speed, and high finite-difference method has
better accuracy. When using the proposed method for
shape reconstruction, the RMS value realizes 10-fold
magnitude improvement and the corresponding computing
speed increases by 4-fold compared with the traditional
Southwell iteration method. It is apparent from Fig. 7 that,
high-order finite-difference method and our method can
handle higher-order terms better than Huang’s, which has
larger error propagation and edge effect. Besides, our
method plays an important role in accuracy based on initial

value, which is obtained by Legendre polynomials as
Fig. 7(e). Therefore, iteration equations based on higher
order integration is necessary and important considering
the accuracy. To sum up, our method has relatively higher
accuracy and faster reconstruction speed, providing an
efficient solution for large matrix with high-order terms in
fringe reflection technique, which can be used in the
reconstruction of large optical surface.

4 Experiment

A freeform optical surface used in illuminating system has
been measured, the reconstruction error of the Zernike,
Southwell, and our proposed method for circular freeform
optical surface are shown in Figs. 8(a) – 8(c). Our proposed
method reconstructed the surface errors achieved the
values of 0.0931 (RMS) and 0.153 (PV) µm, which is
shown in Table 3. Compared with the Southwell iteration
method, reconstruction accuracy had an order of magni-
tude higher, and the time was only 18 s. It is apparent from
the result that our proposed method has relatively good
effect for 3D shape reconstruction, paving the way for
engineering application in fringe reflection technique.

5 Conclusion

Generally, a rapid, accurate and easily implemented
method is proposed to reconstruct the large optical surface
with high-order terms. The merits of proposed method can
be summarized as follows. First, the proposed method can
be used to reconstruct optical surface with different shape
apertures, which expanded the application of 3D recon-
struction in fringe reflection technique. Second, our
method is good at handing large optical surface with
high order terms, still fast as improving the accuracy
compared with traditional algorithm. In summary, our
method is an effective and accurate tool in practical
measurement. The limitation for this proposed method
is also investigated. It cannot handle irregular mesh grid
very well because of the non-uniform grids, but the
rectangular mesh grid is relatively common in practical
measurement.

Fig. 6 Shape map of simulated surface

Table 2 Analysis of 3D reconstruction results of measured surfaces under SNR = 30

measured surface reconstruction method PV/mm RMS/mm time/s

arbitrary Southwell iteration 2.42 1.44 � 10–1 125

Zhou’s 1.8 1.12 � 10–1 26

Huang’s 3.80 � 10–1 4.08 � 10–2 141

Li’s 1.48 � 10–1 1.49 � 10–2 127

our 9.6 � 10–2 1.35 � 10–2 27
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Table 3 Comparison of reconstruction error of freeform surface by two methods

tested surface reconstruction method PV/mm RMS/mm time/s

arbitrary (800 pixel � 800 pixel) Southwell iteration 1.42 8.39 � 10–1 101

our method 1.53 � 10–1 9.31 � 10–2 18

Fig. 7 Absolute errors of arbitrary surface using different methods. (a) SOR method based on Southwell geometry; (b) combined SOR
with Legendre method proposed by Zhou; (c) iterative compensation method proposed by Huang; (d) iteration equation based on higher
order integration method proposed by Li; (e) Legendre polynomials method; (f) our method
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