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Abstract Optical vortices carrying orbital angular
momentum (OAM) have attracted extensive attention in
recent decades because of their interesting applications in
optical trapping, optical machining, optical communication,
quantum information, and optical microscopy. Intriguing
effects induced by OAMs, such as angular momentum
conversion, spin Hall effect of light (SHEL), and spin–
orbital interaction, have also gained increasing interest. In
this article, we provide an overview of the modulations of
OAMs on the propagation dynamics of scalar and vector
fields in free space. First, we introduce the evolution of
canonical and noncanonical optical vortices and analyze the
modulations by means of local spatial frequency. Second,
we review the Pancharatnam–Berry (PB) phases arising
from spin–orbital interaction and reveal the control of beam
evolution referring to novel behavior such as spin-
dependent splitting and polarization singularity conversion.
Finally, we discuss the propagation and focusing properties
of azimuthally broken vector vortex beams.

Keywords orbital angular momentum, polarization, spin
angular momentum, Pancharatnam–Berry (PB) phase,
angular diffraction

1 Introduction

Scientists have realized that light fields carry linear and
angular momenta after the pioneering work of Poynting
[1]. The angular momentum carried by a light field can be
divided into the spin and orbital parts [2,3], which are
conventionally associated with a circular polarization state
and vortex phase, respectively. The spin angular momen-
tum (SAM) is an intrinsic property of photons, similar to

the SAM of electrons; it has quantitated values of �ÿ and
depends on the circular polarization state of the light field.
The orbital angular momentum (OAM), however, can be
further divided into intrinsic and extrinsic OAMs [2]. In
1992, Allen et al. recognized that light fields with spiral
phases carry intrinsic OAMs [4]. This intrinsic OAM
carried by each photon can be many times greater than the
SAM [2,4]. Immediately after the detection reported by
Woerdman [5–7], several studies in this new area of light
physics began. Meanwhile, light beams carrying intrinsic
OAMs have found practical applications in optical
trapping, optical machining, optical communication,
quantum information, optical microscopy, and so on [8–
10]. Extrinsic OAMs arise from the cross product of the
total linear momentum transported by the beam and
position of its axis relative to the origin of coordinates
[2]. Therefore, the total angular momentum of a light field
can be presented in the form of three summands.
Simultaneously, particular interest was paid to the

interaction of angular momenta, which produce nontrivial
evolution of light fields [11–16]. The interaction between
SAMs and extrinsic OAMs leads to the transverse
deflection of circularly polarized beams when propagating
in inhomogeneous media, including the polarization-
dependent Imbert–Fedorov effect of a light beam reflected
or refracted at the interface between two media and
splitting of rays in inhomogeneous anisotropic media
[13,17–20]. The interaction between intrinsic and extrinsic
OAMs leads to significantly enhanced transverse deflec-
tion with respect to the values for the topological charge of
the vortex phase [17,21,22], similar to the Magnus effect of
light [23]. In this article, we review the modulations of
OAMs on the propagation dynamics of light fields,
considering both scalar and vector fields. In Section 2,
we introduce the basic theoretical description of OAM for
generic light fields. In Section 3, we describe the
evolutions of canonical and noncanonical optical vortices

Received August 7, 2017; accepted September 27, 2017

E-mail: pengli@nwpu.edu.cn

Front. Optoelectron. 2019, 12(1): 69–87
https://doi.org/10.1007/s12200-017-0743-3



and emphatically analyze the modulation based on local
spatial frequency. In Section 4, we present the
Pancharatnam–Berry (PB) phases that stem from spin–
orbital interaction and discuss the novel propagation
dynamics induced by spatially variant PB phases. Finally,
we give an overview on the propagation and focusing
properties of azimuthally broken vector vortex beams.

2 OAM of light fields

First, we consider a monochromatic plane wave propagat-
ing along the z-axis in free space, of which the electric and
magnetic components are characterized as E and B,
respectively. Considering the time-harmonic feature of a
light filed, the time-averaged linear momentum density can
be expressed as

p ¼ ε0
2
ReðE� � BÞ: (1)

A uniformly polarized paraxial light field has vector
potential denoted as A = u(x,y,z)exp[ – i(wt – kz)](ex +
isey), where u(x,y,z) is the normalized complex amplitude,
w is the frequency, k =w/c is the wavenumber, ex and ey are
the unit vectors, s = i(ab* - a*b) is the polarization
ellipticity, and a and b are the complex amplitude of two
orthogonal polarizations with |a|2 + |b|2 = 1. The time-
averaged linear momentum density thus can be rewritten in
the cylindrical coordinate system as

p ¼ iε0ω
2

ðu�ru – uru�Þ þ ε0ωkjuj2ez þ
ε0ω�
2

∂juj2
∂r

ef,

(2)

where ez and ef are the longitudinal and azimuthal unit
vectors in the cylindrical coordinate system, respectively.
Thus, the total angular momentum can be obtained by
integrating the cross product of linear momentum density
with the radius vector r = (r,0,z)— i.e., J = ε0(r � p)dr
[24]. From Eq. (2), we can find that, when s = 0— that is,
for the linearly polarized plane waves— there cannot be
any component of angular momentum, whereas for the
circularly polarized plane waves— i.e., s≠ 0— there are
pure SAMs with respective to the spin state s.
Nevertheless, Allen et al. noted that, for the Laguerre–

Gaussian (LG) mode with complex amplitude [6,25]

LGl,pðr,fÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p!

πðpþ jljÞ!

s
1

wðzÞ

ffiffiffi
2

p
r

wðzÞ
� �jlj

�exp –
r2

wðzÞ2
� �

Ljljp
2r2

wðzÞ2
� �

�expðilfÞexp – ik
r2z

2ðz2R þ z2Þ
� �

exp½ – iΦ�,

(3)

where Ljljp is a normalized Laguerre polynomial with l and
p denoting the azimuthal and radial variation of phase
fronts, zR = kw2

0 /2 is the Rayleigh range, w(z) =
w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=z2R

p
is the beam waist, F = (2p + |l| + 1)

tan–1(z/zR) corresponds to the Gouy phase, and (r,f,z) are
the cylindrical coordinates. The total angular momentum
density can be described as [26]

jz ¼
l

ω
juj2 þ �r

2ω
∂juj2
∂r

� �
ez: (4)

Integrating this equation, we obtain the total angular
momentum of (l + s)ћ per photon. Obviously, the total
angular momentum is divided into the orbital and spin
parts with respect to the topological charge of the vortex
phase and spin state, respectively.
For the generic fields, the linear momentum density can

be deduced from the vector potential and can be given by
[27]

p ¼ ε0
2ω

Im½E�⋅ðrÞE� þ 1

2
r� Im½E� � E�

� �
: (5)

These two terms in the right part of the above equation
correspond to the orbital and spin parts of linear
momentum. Particularly, the orbital part of linear momen-
tum density is closely related to the local wave vector,
depending on the phase gradient perpendicular to the wave
vector. In consequence, the OAM caused by the gradient of
the wave front is rewritten as

jo ¼ r � po ¼
ε0
2ω

Im½E�⋅ðr �rÞE�: (6)

Integrating over the whole transverse field, one can
obtain the OAM per photon.
The simplest example of a light field carrying OAMs is

that with a canonical vortex phase in the transverse plane
of exp(ilf). Similar to classical mechanics, the OAM of a
photon can exert forces and torques on both macroscopic
and quantum objects [28–31]. It has been transferred from
light fields to microsized particles and to atoms and Bose–
Einstein condensates [2,8,32]. Moreover, the modes
carrying distinct l are mutually orthogonal. Relying on
this property, the OAMs have been regarded as another
degree of freedom in optical and quantum communications
[33–37]. Specifically, the OAM state is theoretically
infinite, which makes the beams carrying OAMs appro-
priate candidates for developing the transmission capacity
[38–41]. Furthermore, the OAM-based beams have
promoted many other developments from optical micro-
scopy to light processing and entanglement and quantum
information [42–46]. However, these prospective applica-
tions are based on the investigation about the fundamental
diffractive properties of beams carrying OAMs [47]. In
other words, exploiting other OAM beams can further
develop the practical applications [48–50].
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3 Diffraction of fields carrying OAMs

3.1 Canonical vortices

As the scalar solution of Helmholtz equation in the
cylindrical coordinate system, the LG eigenmodes were
initially demonstrated carrying OAMs [4,51], and then
recognized as the canonical vortices carrying OAMs.
These beams have cylindrical symmetries of complex
amplitude with an on-axis intensity null and vortex phase.
Importantly, as described in Eq. (3), the LG beams are
characterized by the parameters l and p. l is the azimuthal
order giving an OAM of lћ per photon— i.e., the so-called
topological charge of vortex phase; p is the radial index
denoting the ring number of intensity distribution. Figures
1(a)–1(d) show the intensity and phase distributions of four
canonical vortices.
For LG beams, the OAMs are irrespective to the radial

distribution of the beam. Hence, most attention was
devoted to the LG beams with the zeroth radial index—
namely, the LG0,l beams with a single-ringed profile. The
evolution of LG0,l beams, as well as the focusing
properties, were investigated immediately after the
reported work of Allen, including on- and off-axis beams
with different topological charges [52–54] and beams
having single and multiple singularities [55–57]. The
remarkable diffraction property of LG0,l beams is their
divergence; that is, the LG0,l beams undergo obvious
diffraction and rapid expansion of the hollow core with
respect to the modulus of the topological charge— i.e., |l|.
Moreover, the beam divergence angle increases with
increasing OAM. Figure 1(e) displays the divergence of
LG0,l beams generated from the transformation of a
cylindrical lens (blue) and the forked diffraction grating
(red), respectively. w0 and rrms correspond to the waist of
Gaussian background and square root of the radial variance
for the intensity distribution, respectively [58].
Recently, the LG beams with large radial index were

reported with quasi-nondiffraction within the same propa-
gation region as Bessel beams [59–62]. For the LG beams
described in Eq. (2) with a large radial index, the amplitude
terms can be approximately equivalent to the elegant
Bessel function as [60]

exp –
r2

wðzÞ2
� � ffiffiffi

2
p

r

wðzÞ
� �jlj

Ljljp
2r2

wðzÞ2
� �

� Γðpþ jlj þ 1Þ
p!N jlj=2 Jl 2

ffiffiffiffiffiffiffi
2N

p r

wðzÞ
� �

, (7)

where N = p + (|l| + 1)/2, G($) is the gamma function, and
Jl($) is the first type of Bessel function with order l. Figure
2 depicts the evolution behavior of a zeroth-order Bessel–
Gauss beam as well as LG beams with l = 1, p = 10 and l =
5, p = 10. The Gauss background has the same waist of w0

= 1 mm. It is clear that the LG beams with a high radial
index maintain the intensity profile in a large propagation
distance; namely, such LG beams have a nondiffractive
property. This property supports the LG beams with a high
radial index as an alternative representation of BG beams,
and vice versa [59].
It is also worth noting that the radial variation of the

wave front has potential in the application of optical
communication; the LG beams with nonzero radial indices
could help enlarge the communication capacity. Moreover,
the nondiffractive property in a certain short transmission
distance is useful for receiving higher signal power,
especially when the receiver has a very limited aperture
size [63].

3.2 Noncanonical vortices

In addition to the canonical vortices having a helical wave
front, noncanonical vortices that carry variable OAMs,
such as nonsymmetric vortex beams [64,65], Helico-
Conical light beams [66–68], fractional vortex beams [69–

Fig. 1 (a) –(d) Intensity and phase (insets) distributions of canonical vortices; (e) the divergence of vortex beams keeping the Gaussian
waist or rrms constant. Two kinds of vortex beams are generated by using forked diffraction grating or cylindrical lens, respectively [58]
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71], airy vortex beams, and so on, have been proposed with
impressive propagation behaviors and practical applica-
tions [72–74]. For example, optical vortices with an
azimuthally nonuniform phase gradient, including single
and multiple singularities, have been successfully created
to manipulate the three-dimensional intensity and OAM
distributions, especially for engineering the distributions in
the vicinity of the focal plane [75–77]. Based on this,
optical tweezers that drive colloidal microspheres around
quite complicated trajectories have been experimentally
implemented [76–79]. Figure 3 shows an optical tweezer
based on a noncanonical vortex possessing a triangle phase
structure with l = 34 [78]. Moreover, the beams having
Helico-Conical phase structures, of which both phase and
amplitude express a helical profile as the beam propaga-
tion, have demonstrated their capacity to maintain high
photon concentration even at higher values of topological
charge [68].
The novel propagation dynamics of noncanonical

vortices can be expected and explained by the local spatial
frequencies [67,79]. For a generic light beam having a field
described as E(x,y) = E0(x,y)exp[iy(x,y)], where E0 and y
are the transverse amplitude and phase distributions,
respectively, the local spatial frequencies are given as
[67,79]

fx ¼
1

2π
∂
∂x
ψðx,yÞ,

fy ¼
1

2π
∂
∂y
ψðx,yÞ: (8)

According to Eq. (8), the frequency mapping to the far-

field can be plotted, which provides an intuitive mapping
for the intensity distribution. Here, we take the vortex
beam having an azimuthally nonuniform phase gradient as
example, of which the phase is described as y(r,f) =
2πl(f/2π)n, where n is an integer. The corresponding local
spatial frequencies are thus given as [79]

fx ¼
nlfn – 1sinf

ð2πÞnr ,

fy ¼
nlfn – 1cosf

ð2πÞnr : (9)

According to Eq. (9), the mapping (fx, fy) to the far-field
can be plotted. Figure 4(a) shows the calculated local
spatial frequency mapping for the case of n = 3, l = 7, and
r = 1. Obviously, the curve represents an Archimedes spiral
[79].
In this principle, we attach this noncanonical vortex

phase onto the autofocusing Airy beams (AABs) [79],
which maintain cylindrical intensity profiles as beam
propagation, to modulate their evolution and focusing
properties. Figure 4(b) shows the experimentally obtained
intensity distribution in the focal plane. It is clear that the
experimental result is coincident with the corresponding
frequency map; that is, AAB yields to the propagation
trajectory depicted in Fig. 4(a).
Figure 5 shows the simulation results including the side

view of the AAB propagation at the y-z plane and the
intensity distributions at different propagation distances
near the focal points. AAB has parameters of l = 8 and n =
2. Compared with the smooth focusing behavior of AABs
carrying classical OAMs [80–83], the light energy

Fig. 2 Evolutions of (a) zeroth-order Bessel beam and LG beams
with parameters of (b) l = 0, p = 10 and (c) l = 2, p = 10,
respectively

Fig. 3 (a) Phase structure of a triangle vortex with l = 34;
(b) beam shape at the focal plane; (c) experimental results of
optical tweezer [78]
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gradually converges, and the intensity presents slight
oscillation when close to the focal point, as shown in Figs.
5(b)–5(e). This remarkable spiral focusing demonstrates
that arbitrary manipulation on the propagation dynamic of
light fields can be realized by engineering the locally
spatial frequencies.
Further, we introduce variant OAMs into vector AABs

to realize the combined manipulation on intensity and
polarization distributions in the focal plane of vector fields
[84]. Based on the local spatial frequency shown in Eq. (8),
we realized intriguing abrupt spin-dependent splitting of
vector AABs by encoding cosine-azimuthal variant vortex
phases. For a vector AAB with a cosine-azimuthal variant
phase, the electric field can be described by the super-
position of two spin components as follows:

Eðr,fÞ ¼ E0ðrÞ½cosðmfÞex þ sinðmfÞey�expðicosnfÞ

¼ E0ðrÞfexp½ – iðmf – cosnfÞeL�

þexp½iðmfþ cosnfÞeR�g, (10)

where E0(r) = Ai[(r0 – r)/w]exp[α(r0 – r)/w], Ai($) denotes
the Airy function, r0 is the radius of the primary ring, w is a
scaling factor, a is the exponential decay factor, m is the pol-
arization order, and eL = [1, + i]T/

ffiffiffi
2

p
and eR = [1, – i]T/

ffiffiffi
2

p
are the unit vectors of the left- and right-handed circular
polarizations, respectively. According to Eq. (10), two spin
components have distinct phase structures— i.e., yR,L =
�(mf � cosnf), respectively. According to Eq. (8), the
local spatial frequencies in the cylindrical coordinate
system are given as

L :

f� ¼
1

2πr
mþ n sinnfcos

nπ
2

þ cosnfsin
nπ
2

� �				
				,

f ¼ φ –
π
2
,

8>>><
>>>:

(11a)

R :

f� ¼
1

2πr
m – n sinnfcos

nπ
2
– cosnfsin

nπ
2

� �				
				,

f ¼ φþ π
2
:

8>>><
>>>:

(11b)

Considering the parity of phase parameter n, we divided
the relationship between local spatial frequencies of two
spin states into two cases. For an odd n, the local spatial
frequencies have an identical closed-form expression,
indicating two spin components presenting the same
profile. When n is even, owing to the complementarity of
trigonometric functions, the mapping corresponding to
local spatial frequencies of two spin components are
spaced from each other along the azimuthal direction.

Fig. 4 (a) Local spatial frequencies mapping to the focal field;
(b) focal filed intensity of AAB with a power-exponent-phase
vortex [79]

Fig. 5 (a) Side view of propagation dynamic (in y-z plane) of AAB with l = 8 and n = 2; (b) –(e) intensity distributions at different
propagation distances of z = 19.52, 20.50, 21.48 and 22.45 cm, respectively [79]
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Figure 6 displays the intensity distributions of vector AAB
with polarization orderm = 2 and different phase parameter
n in the focal plane. In agreement with the theoretical
expectation, the vector AABs exhibit distinct focusing
behavior with respect to the parity of parameter n. It is
noteworthy that when n is odd, although the local spatial
frequencies of two spin components have identical spatial
distributions, opposite transverse energy flux arising from
the phase terms exp(�imf) leads to nonuniform intensity
distributions. As a result, two spin components would not
overlap with each other completely, leading to a transverse
spin-dependent splitting.
As discussed above, according to the close mapping

relationship between local spatial frequency and the
geometrical shape of the focal field intensity distribution,
we can consciously control the focusing of two spin
components and further manipulate the transverse spin-
dependent splitting and phase distributions of the arbitrary
vector field by engineering phases corresponding to two
spin components [85].

4 Modulation of PB phases on the vector
fields

4.1 PB phases

So far, the generation method of vector fields can be
divided into two categories: 1) interference superposition
of light fields with different polarizations [86–88]; 2)
polarization transformation from spatial modulator, such as
inhomogeneous wave plate or polarizer, liquid crystal
plate, subwavelength grating and metasurface [89–95].
The first one can generate vector fields with an arbitrary
complex polarization distribution, whereas the latter is
convenient and efficient. These two methods both arise
from the phase modulation of two spin states— i.e., the
spin–orbital interaction [96,97]. Here, we take the latter

method as an example. We suppose that the wave plate has
a spatial variant optical axis denoted as φ(x,y), with
transmission rate t(x,y) = 1. Thus, the Jones matrix of the
inhomogeneous wave plate can be expressed as

M ¼ cos2φ sin2φ

sin2φ – cos2φ

" #
: (12)

For a left-handed circularly polarized field (or right-
handed circularly polarized field) with Ein = E0eL (Ein =
E0eR), after passing through this inhomogeneous wave
plate, the transmitted field has complex amplitude and
polarization denoted as Eout =M∙Ein = E0exp(i2φ)eR [Eout

= E0exp( – i2φ)eL for the right-handed polarized one].
Therefore, two spin states have distinct responses; that is,
two spin states acquire additional geometric phases
denoted as yL = 2φ(x,y) and yR = -2φ(x,y), respectively.
These special geometric phases arising from polarization
transformation are also called the PB phase [98].
Figure 7 schematically shows the PB phase generation

during polarization transformation; the inset illustrates the
polarization transformation process on the Poincaré
sphere. A focused Gaussian beam with linear polarization
A passes through an inhomogeneous optical system (or
wave plate), which imposes PB phases yL and yR onto two
spin components, changing its polarization state to B [99].
Supposing the incident beam has the field distribution E =
E0[aexp( – if0)eL + bexp(if0)eR]/

ffiffiffi
2

p
, the output thus can

be described as

E ¼ E0faexp½iðψL –f0ÞeR� þ bexp½iðψR þ f0ÞeL�g=
ffiffiffi
2

p
:

(13)

Equation (13) indicates that by utilizing the spatially
inhomogeneous PB phases, one can conveniently reshape
the wave front without changing the intensity profile
immediately after the polarization transformation optical
system. Based on this result, various optical elements with

Fig. 6 Simulation intensity distributions of vector AABwith polarization orderm = 2 and different phase parameters n in the focal plane.
I0, IL and IR correspond to the total intensity, left- and right-handed spin components, respectively. The insets represent the phase profiles.
The dashed curves denote the local spatial frequencies distributions [84]
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architectures including patterned subwavelength grating,
liquid crystal, and metasurface have been broadly used to
generate vector beams.
In addition to the standard Poincaré sphere shown in Fig.

7, other kinds of Poincaré spheres have been proposed to
represent the inhomogeneous polarization states [100–
103], such as the higher-order Poincaré spheres composed
of two opposite spin states with opposite spiral phases
[100] and the hybrid-order Poincaré sphere composed of
two opposite spin states with different spiral phases [102].
For these cases, the resulting PB phases of two spin
components are closely related with the topological
charges and spin assigned to the sphere [100,102].

4.2 Polarization singularity conversion

The PB phase, in turn, supports an approach to manipulate
the propagation dynamics of two spin states because of the
corresponding relationship between the phase gradient
structures in position space and wave vector in momentum
space. Utilizing tailored PB phases, some intriguing
manipulations of spin states in three dimensions, involving
spin-orbital interaction, spin Hall effect of light (SHEL),
and light-guiding confinement, have been implemented
[104–109].
The most common PB phases are the canonical vortex

phases— i.e., 2φ = �lf—which transform an incident
Gaussian beam with linear polarization into a cylindrical
vector beam [86,88,105]. In such cases, two spin
components carrying opposite OAMs exhibit identical
diffraction, as mentioned in Section 3.1. As a result, the
vector beam maintains its polarization state with a slowly
varying intensity profile upon propagation. Nevertheless,
when lR≠lL, two spin components exhibit obvious
divergence during beam propagation [110,111]. Owing to
the cylindrical symmetry, the divergence leads to spin-
dependent separation along the radial direction. Consider-

ing the total field output from the optical system (or wave
plate), one can see that it is a cylindrical vector vortex
beam characterized by parametersm = (lL – lR)/2 and l = (lL
+ lR)/2. Here, m and l are the polarization order and
topological charge of the additional vortex phase,
respectively. On the other hand, as a whole, under the
modulation of an additional OAM, the vector fields exhibit
spin-dependent splitting upon propagation. Therefore, this
phenomenon is also called the radial SHEL. Shu et al.
realized such radial spin-dependent splitting by using a
dielectric metasurface with a radially varying optical
axis [112].
For the vector vortex field with larger OAM, more

obvious divergence occurs, resulting in more serious
polarization distortion [111]. In other words, according to
the dependence of the amplitude profile on the topological
charge, the vector vortex fields with the same polarization
order but different OAMs usually present distinct intensity
profiles. To overcome the divergence, we proposed perfect
vector vortex beams, which not only have an intensity
profile independent of the polarization order and additional
OAM but also have a stable intensity profile and
polarization at a certain propagation distance [113]. Figure
8 displays the perfect vector vortex beams generated from
the superposition of two annular spin components with
different vortex PB phases, which are created by the
Fourier transformation of Bessel–Gauss beams with an
identical transverse wave vector. Here, |H〉 denotes the
state composed of two spin components with OAMs
defined by subscripts. The local linear polarization
orientation and phase distribution are shown in the third
and fourth rows, respectively. Importantly, such vector
vortex beams have been demonstrated to have the capacity
of maintaining the polarization and intensity profile in a

Fig. 7 Schematic illustration of PB phases generation in the
process of polarization transformation. Insert: schematic illustra-
tion of polarization transformation on the Poincaré sphere [99]

Fig. 8 Distributions of intensity (top row), s3 (second row),
polarization orientation (third row) and phase (bottom row) of
different states. |H〉 denotes the sate composed by two spin
components with OAMs defined by subscripts [113]
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certain propagation distance [113].
Furthermore, we note that the divergence of two spin

components composing the vector field reaches its
maximum at the far-field— i.e., z!1. Therefore, we
explored the divergence by observing the polarization state
in the focal plane [114]. Figure 9 shows the numerically
calculated results of the intensity and polarization
distributions of the focused azimuthally polarized beam
carrying vortex phases of l = 1, 2 and 3. The dotted,
dashed, and solid lines in the top row depict the zero
contours of s1, s2, and s3, respectively; the background and
short lines in the bottom row denote the ellipticity and
orientation of the polarization ellipse, respectively. The
results show that when an additional OAM is attached to
the vector beam, the polarization in the focal plane changes
dramatically. Moreover, we note that the azimuthally
polarized beams focus into radially polarized ones.
According to Eq. (3), one can find that at the focal

plane— i.e., z!1— vortex beams have cylindrical
intensity profiles, whose size is dependent on their
topological charges. In addition, it is notable that the
Gouy phases of vortex beams are F = (|l| + 1)π/2, which
means that two spin components composing the vector
vortex beam obtain different Gouy phases with respect to
their topological charges [115]. If (|lL| – |lR|)/2 is even, two
spin components are in phase within the focal plane, and
the focused field has identical polarization orientation with
the incident field; if (|lL| – |lR|)/2 is odd, two spin
components have constant phase difference of π, and the
overlap area of two spin components consequently
presents opposite polarization orientation. For the case
shown in Fig. 9(a), the right-handed spin component has
the zeroth OAM, so its corresponding focal field has an
intensity profile similar to the Gaussian beam; that is, the
corresponding focal field presents a solid bright spot in the
center point. Accordingly, the incident vector point is
transformed into a circularly polarized point. However, for

the cases of Figs. 9(b) and 9(c), (|lL| – |lR|)/2 = 1, the
overlap areas are radially polarized. Meanwhile, because of
the relationship between the profile size and topological
charge, the spin component that has a smaller topological
charge dominates the central region. As a result, the vector
point is transformed into a circularly polarized point with
corresponding chirality.
In addition to the abovementioned beams that slowly

change their polarization in the focusing process, we also
created vector AABs associated with OAM and experi-
mentally studied the abrupt polarization transitions
induced by spin–orbital interaction by engineering the
PB phases corresponding to two spin components [116].
Figure 10 displays the autofocusing of radially polarized
AABs without and with a single charged vortex phase.
From Fig. 10, it is clear that when the polarization order
and topological charge of the vortex phase are equal in
number, significant polarization singularity conversion
occurs, and the local polarizations undergo an abrupt
transition from linear to spin states.

4.3 Spin-dependent splitting

The other typical selection of the PB phase is that with a
linear function, such as 2φ(x,y) = �kxx [99,117,118]. For
this case, two spin states would obtain two mutually
conjugate titled phases and separate transversely with each
other upon propagation. This spin-dependent transverse
separation was reported by Hasman in 2002 by employing
spatially variant subwavelength grating [117,118]. Later,
many primary works about the PB phase inducing
photonic SHE were carried out. Zhang et al. observed
highly enhanced spin-dependent transverse separation by
using metasurface composed of metal nano-antenna arrays
[108]. Ling et al. reported a giant photonic SHE by using
dielectric metasurface fabricated by a femtosecond laser
self-assembly nanostructure [119]. In addition to the pure
phase information, the phases within which the amplitude
information is encoded, such as Hermite–Gauss and Airy
modes [120], even the combination of several phases [99],
can be selected as PB phases. Figure 11 displays the spin-
dependent splitting in the case of 2φ(x,y) = �(kxx + f).
The initial beam is depicted in Fig. 11(a). The side view of
propagation (Fig. 11(d)) and s3 distribution (Fig. 11(c)), as
well as measured polarization, demonstrate that not only
the SAM but also the OAM can be separated merely by
engineering PB phases.
Of course, the PB phase can be selected as any phase

expected. This means that by steering the PB phases, we
can also realize longitudinal spin-dependent splitting. In
geometric optics, we realize the convergence and diver-
gence of the beam by using a square phase imparted by a
lens. Therefore, we suppose that the linearly polarized
incident beam has a convergent phase of exp( – ia0r2), and
the PB phases are 2φ(x,y) = �(ar2). For such a case, it is

Fig. 9 Intensity and polarization distributions of the focal fields
of the azimuthally polarized beams with vortex phases of l = 1, 2
and 3, respectively. The dotted, dashed and solid lines in the top
row depict the zero contours of s1, s2 and s3, respectively; the
background and short lines in the bottom row denote the ellipticity
and the orientation of polarization ellipse, respectively [114]
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clear that two spin components would respectively focus
into the focal planes f(a0�a), resulting in dual-foci in the
longitudinal direction— i.e., longitudinal spin-dependent
splitting [106,121,122]. By relying on modern fabrication
technology, metasurface and other devices with subwave-
length thickness enable a PB phase lens, similar to the
Fresnel lens [123–126]. Furthermore, a PB phase-based
multifocus lens has also been realized by using segmented
metasurface [127]. Figure 12 schematically shows the
operating principle of a longitudinal three-focus lens. To
realize three foci, the metasurface is divided into three
annular regions with different PB phases and thereby focus
the corresponding incident field to three longitudinal
points.

Additionally, by combining this longitudinal spin
separation with the transverse one, we experimentally
achieved a controllable spin-dependent focal shift in three-
dimensional space [99]. When the PB phase is a
polynomial as 2φ(x,y) = kxx + kyy + ar2, two spin states
hence focus to points (xR,yR,zR) and (xL,yL,zL), respec-
tively. Here, xR,L = kxzR,L/k, yR,L= kyzR,L/k, and zR,L =
f(a0�a). This modulation of special PB phases on the
propagation dynamics of spin states reveals a series of
intriguing phenomenon. More importantly, it promotes the
development of spin-optics and further contributes to
application; e.g., this remarkable prospect of spin-depen-
dent separation in holographic imaging has excited new
research directions [128,129].

Fig. 10 Autofocusing of radially polarized AABs without (top) and with (bottom) a single charged vortex phase. (a) and (c) depict the
beam intensity patterns at input and output, respectively; (b) and (d) side view of the beam propagation from numerical simulation and
measured beam polarizations at output [116]

Fig. 11 Spin-dependent separation with the bifurcation of orbital
angular momentum. (a) Initial beam with polarization direction
marked with red arrowheads; (b) horizontally and vertically
polarized components; (c) interference pattern of output beam with
a plane wave (top), and the corresponding s3 distribution (bottom);
(d) side view of the beam propagation

Fig. 12 (a) Schematic illustration of the longitudinal three-foci
metasurface lens; each focal point is focused from segmented
region with distinct PB phase response; (b) the observed light spots
correspond to the three focal points. Adapted from Ref. [127]
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4.4 z-dependent polarization

Accompanied by the spin-dependent separation, the light
field changes its polarization upon propagation. This
special light field with longitudinally variant polarization
but an identical transverse intensity pattern during
propagation has attracted research interest owing to its
application potential in material processing, polarization
meteorology, microscopy imaging, optical communica-
tion, and so on [106,121]. In 2013, Cardano et al.
generated Poincaré beams that rotate the transverse
polarization distribution by using spiral wave plates
[130]. They transformed part of the incident light field
with LG0,0 mode and spin state into LG0,l mode with
opposite spin state. The transformed LG0,l has a vortex
phase axially overlapping with the idle LG0,0 mode,
resulting in Poincaré beams with Lemon, star, and spiral
polarizations that depend on the topological charge of
LG0,l mode. As mentioned above, LG modes have a Gouy
phase that is closely related to the radial index p and
topological charge l. Therefore, two spin states have a
longitudinally varying Gouy phase difference— i.e., DF =
|l|tan–1(z/z0). This z-dependent phase difference leads to the
rotation of polarization upon beam propagation.
Remarkably, Moreno et al. reported a kind of vector

Bessel beam that changes transverse polarization upon
propagation— i.e., vector Bessel beams having z-depen-
dent polarization [131,132]. Combining the vortex phase
with axicon phases, one can create two-dimensionally
varying PB phases with different periods for two
orthogonal polarizations— e.g., yR,L(r,y) = �lf +
(kr � k0)r. In this principle, we construct vector beams
with transverse varying polarization and further generate
zeroth- and higher-order Bessel beams with z-dependent
polarization by employing the linear focusing of the axicon
[133]. Figure 13 shows a schematic representation of z-

dependent polarization distribution and transformation as
well as experimentally measured intensity distributions of
vertically polarized components at different planes. It is
seen that the first-order vector Bessel beam longitudinally
varies its local polarization upon propagation. Overall, the
Bessel beam presents three-dimensionally variant polar-
ization.
Furthermore, we explored the self-healing of these

vector Bessel beams, including the transverse intensity
profile and the three-dimensional polarization structure, by
observing their transverse intensity and Stokes parameter
distributions after propagating through two disparate
obstacles. Figure 14 shows the measured reconstruction
of second-order vector BG beams after a linear obstacle.
Importantly, as the results show in Fig. 14, the three-
dimensional polarization property can be reconstructed
after such an obstacle. The degree of longitudinal variation
in polarization and the self-healing can address many
application challenges. For example, by combining it with
the polarization response property of anisotropic material,
these beams can be used for material processing at a special
depth and to improve the axial resolution in 3D imaging.
To some extent, the higher-order Bessel beams supporting
quantitative OAM and SAM simultaneously, with z-
dependent polarization, may induce intriguing phenomena
such as SAM-OAM conversion and spin transport.

5 Modulation of OAMs on the azimuthally
broken fields

5.1 Vortex beams

The canonical vortex beam manifests itself as the helical
phase, which generally has rotation symmetry. The
transverse OAMs accordingly are null for such beams.
However, as discussed in Section 3.2, the noncanonical
vortex phases break this rotation symmetry and thereby
produce transverse energy flow, leading to the variation of
beam profile during propagation. It is natural to expect that
by breaking the rotation symmetry, one can consequently
introduce nonzeroth transverse OAM, then create abundant
intensity structures. On the other hand, research on broken
beams has demonstrated an important effect in information
reconstruction [134]. Therefore, increasing attention has
been devoted to the nonsymmetric optical vortices [135–
140].
Remarkably, in the azimuthally broken vortex beams—

namely, fan-shaped vortex beams— the transverse energy
flow induced by the phase gradient gradually transfers the
energy to the opaque region upon beam propagation [135].
The diffraction of fan-shaped vortex beams can be
interpreted based on the angular diffraction theory [141–
143]. Supposing that a fan-shaped mask has a sector photic
region, the transmission function can be expressed as
[144,145]

Fig. 13 Schematic representation of z-dependent polarization
distribution and transformation; (b) –(f) experimentally measured
intensity distributions of first-order Bessel beam propagating
through a vertical polarizer at planes with equal space [133]
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PðfÞ ¼ t, – β=2£φ£β=2,

0, else,  

(
(14)

where b is the angle width of the fan-shaped aperture, and t
is the transmission of the photic region. Here, we set t = 1,
and the incident vortex beam has complex amplitude
denoted as E = exp( – r2/w2)exp(ilf), where w is the waist
of the Gaussian background. According to the angular
diffraction theory, the photic region is analogous to an
angular grating with 2π periodic nature. The complex
transmission of the angle distribution can be expressed in
terms of the angular momentum distribution with a Fourier
coefficient as follows [144,145]:
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where n is an integer. From Eq. (15), one can find that after
passing through the aperture, the incident beam splits into a
series of OAM spectra, which are characterized by the
topological charges of l + n. In consequence, the
diffraction of the vortex beam can be described by the
superposition of diffractive OAM spectra.
For each OAM spectrum that follows the paraxial

approximation, its evolution can be described by the
Fresnel diffraction as
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where (r,q,z) are the cylindrical coordinates. With the help
of Bessel integration, we can obtain the diffractive fields as
[145]

Eð�,�Þ ¼ uð�,zÞeiΔΦ
Xþ1

n¼ –1
sinc

nβ
2

� �
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(17)

with
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½Iðlþn – 1Þ=2ðγÞ – Iðlþnþ1Þ=2ðγÞ�exp –

1

2

�2
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where DF = 3π/4 – 3tan–1(z/z0)/2+ zz0(r/w0)
2/(z2 + z20)

denotes the dynamic phase, Iv(g) is the modified Bessel
function of the first kind of order v, g = r2(1+ iz0/z)/2w

2
z,

wz = w0[1+ (z/z0)
2]1/2 is the beam waist at propagation

distance z, and z0 = kw2
0/2 is the Rayleigh length. All

nonessential factors are absorbed into the envelope profile:
u(r,z) = (rb/4πw0)(z0/z)

5/4(z0/Rz)
3/4exp[ – i(π – q0)/2],

where Rz = z[1+ (z0/z)
2] is the radius of curvature for

the wave front.
According to Eqs. (17) and (18), we calculate the

diffractive fields by numerically solving the above two
equations. Intuitively, after propagating a distance z, the
angular position of the peak intensity experiences angular
rotation, which depends on l. Figure 15 presents the
relationship between rotation angle and topological charge,
as well as the intensity distribution of l = -4 and -20 vortex
beams at z = 0 and 25 cm planes, respectively, with the
parameters selected as l = 532 nm, w0 = 1 mm [145]. In
Fig. 15(a), the solid curve corresponds to the result
calculated from Eqs. (17) and (18), and the blue and red
squares correspond to the measured results of the two spin
states. It is discernible that the fan-shaped vortex beams
undergo rotation during diffraction. Importantly, the
rotation angle increases with increasing topological charge.
Figure 15(d) shows the intensity distributions of l = �20
vortex beams after propagating 25 cm. The red and blue
lines correspond to the l = 20 and -20 order vortex beams.
It is quite clear that the vortex beams having equal modulus
of topological charges rotating equally along the opposite
azimuthal direction. This l-dependent rotation can also be
intuitively described by the transverse OAM flow, which is
proportional to the azimuthal gradient of the vortex phase.
Owing to the transverse energy flow, it is naturally seen

that the rotation increases with increasing propagation

Fig. 14 Measured transverse intensity and local polarization distributions of the reconstructed second-order BG beam with hybrid
polarizations at propagation distances of z = 21, 23.8, 26.6, 29.5, 32.2 cm, respectively. The red and green ellipses denote the RH and LH
elliptical polarizations, respectively. The linear obstacle with a diameter of about D = 70 mm is placed at plane z = 16.6 cm [133]
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distance [145]. Figure 16(a) shows the relationships
between rotation angle |Dq| and propagation distance for
three topological charge vortex beams, according to Eqs.
(17) and (18). As expected, the rotation angle increases
with increasing propagation distance. Particularly, at the
far-field— i.e., z!1— from Eq. (17) and (18), and it
can be concluded that the complex amplitudes Al+n(r,z)
become real values. Meanwhile, the nth-order OAM
spectrum has a constant phase retardation (l + n)
(q – π/2). This means that the OAM spectra are in phase
and constructively interfere at azimuthal position q + π/2;
namely, the fan-shaped rotates to azimuthal position
q = π/2. Figures 16(b)–16(d) display the focal intensity
distributions of l = 1, 4, and 20 fan-shaped vortex beams
with b = π/2, respectively. The incident fan-shaped vortex
beams have the same profile as shown in Fig. 15(b).
The propagation of a fan-shaped scalar vortex beam in

the paraxial limit has been reported, showing that the
intensity pattern is rotated with beam propagation, and the
direction of the rotation depends on the sign of the
topological charge. This phenomenon can be attributed to
the spiral phase shift of the beam. For fan-shaped Bessel–
Gauss beams that have remarkable features of nondiffrac-
tion and self-healing, the spatial intensity distributions at
the focal plane were well recovered [140,146,147].

5.2 Vector beams

By breaking the rotation symmetry, vector fields also
produce redistributed intensity, polarization, and OAM
during propagation. Figure 17 displays the measured s3
distributions of fan-shaped pure cylindrical vector (CV)
beams with b = π/2 in the planes of z = 25 cm and z!1
(the focal plane of a lens). The red and blue areas
correspond to the right- and left-handed spin components,
and the dashed areas schematically show the incident

beams. The polarization orders are m = 1, 2, and 4,
respectively. It is clear that the two spin components
represent opposite angular rotation– i.e., angular split-
ting—which is also regarded as the angular SHEL [148].
For a pure CV beam, lL = – lR = m and l = 0, the photonic
SHE value is 2|Dq|. Intuitively, the spin-dependent splitting
reaches its maximum at the far-field. Wang et al. reported
the focal field characteristics of fan-shaped azimuthally
polarized beams and revealed the focusing mechanism of
such beams [138].
Based on this, we introduced the rotation symmetry of a

fan-shaped aperture and then investigated the focal fields
of azimuthally polarized beams with multiple fold rotation
symmetry [144,149]. The focusing mechanism is schema-
tically shown in Fig. 18. Each fan-shaped lobe of the vector
beam creates a pair of spin components, which rotate �π/2
at the focal plane. As a result of the interferential

Fig. 15 (a) Rotation angles |Dq| versus the topological charges;
(b) –(e) Intensity distributions of fan-shaped vortex beams at z = 0
and 25 cm planes. (c) l = -4; (d) l = -20; (e) l = �20. |R〉 and
|L〉 correspond to two spin states. The red and blue areas
correspond to the positive and negative vortex beams, respectively

Fig. 16 (a) Rotation angles |Dq| versus propagation distance z.
(b) –(d) Focal intensity distributions of l = 1, 4 and 20 fan-shaped
vortex beams with b = p/2, respectively. The incident fan-shaped
vortex beams have the same profile as shown in Fig. 15(b)

Fig. 17 Measured s3 distributions of fan-shaped pure CV beams
with b =p/2 in the planes of z = 25 cm (upper row) and z!1 (the
focal plane of a lens, below row). The red and blue areas
correspond to the right- and left-handed spin components, the
dashed areas schematically show the incident beams. The
polarization orders are m = 1, 2 and 4, respectively
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superposition of spin components focusing from several
lobes, the focal field redistributes the polarization,
intensity, and OAM. Remarkably, we found that the focal
field focused from azimuthally polarized beams with odd-
and even-fold symmetries are significantly different.
Figure 19 shows the intensity and s3 distributions in the

focal fields of azimuthally polarized beams with odd- and
even-fold symmetries. For the beam with even-fold
rotation symmetry, it consists of even lobes. According
to the results in Figs. 17 and 18, two lobes with opposite
angle positions in the pupil plane create two spin
components carrying opposite OAMs and SAMs at the
same angle position in the focal plane. The superposition
of two spin components consequently results in locally
linear polarization. However, for the odd-fold beams, the
spin components focused from each lobe cannot overlap at
that same angle position in the focal plane, resulting in a
special focal field with complex polarization and energy
flow, as show in Figs. 19(a), 19(c), and 19(e).

5.3 Vector vortex fields

For a generic vector vortex beam having mth-order
polarization and lÿ OAM, these two spin components
accordingly have topological charges of lL = l+m and lR =
l –m, respectively. After the spatial modulation of the fan-
shaped aperture with angle width of b, two spin

components undergo angular diffraction with respective
to the topological charges lL and lR. As shown in Fig. 15,
the angular diffraction of the vortex beams is closely
related to the carried OAMs. Therefore, by introducing an
additional OAM into broken vector beams— namely,
setting lL ≠ lR— one can produce asymmetric rotation
and then steer the angular spin-dependent splitting
[145,148].
Based on this principle, we reported a new photonic

SHE for a freely propagating fan-shaped vector vortex
beam in a paraxial situation [145]. Figure 20 shows the
asymmetric spin-dependent splitting of fan-shaped vector
vortex beams with constant polarization order. The
polarization order is m = 2, and the propagation distances
are about 25 cm. The topological charges of the vector
vortex beams are l = 2, -1, and 3, respectively. The angle
width in all three cases is b = π/2. For the case of l = m = 2,
the right-handed spin component does not undergo rotation
because of its zero OAM, whereas the left-handed spin
component rotates approximately 35°. Particularly, for the
case shown in Fig. 20(c), lR = 1 and lL = 5, two spin
components can rotate along the same angular direction.
The results provide us with a direct way to manipulate the
photonic SHE of a vector beam, including magnitude and
orientation. Moreover, we can also change the photonic
SHE by altering the shape of the vector vortex beam—
namely, the size of the fan-shaped aperture [148].

6 Conclusions

Since Allen reported that the LG modes carry OAMs, a
great variety of studies have been devoted to exploiting
OAM, including the paraxial and nonparaxial propagation
in homogeneous and inhomogeneous materials, as well as
linear and nonlinear systems. These works have greatly
developed the practical applications, evolving optical
tweezers, optical and quantum communication, super-
resolution microscopy and lithography, and high-precision
measurements. Furthermore, the theories on optical
vortices have been successfully expanded to electric

Fig. 18 Schematic illustration of the focusing dynamics of a fan-
shaped azimuthally polarized beam [149]

Fig. 19 Distributions of intensity and s3 in the focal field of azimuthally polarized beams with different rotation symmetries. Insets: the
intensity distributions of beams in the pupil plane [149]
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beams, atom beams, and even matter wave systems. The
study of OAM is still in its infancy.
Here, we have selectively focused on novel evolutions

of beams carrying OAM and given an overview of the
modulations of OAM on the propagation dynamics of
scalar and vector beams in free space. We first introduced
the evolutions of canonical and noncanonical vortex
beams. Subsequently, we reviewed the Pancharatnam–
Berry phases arising from spin-orbital interaction and
presented novel behavior such as spin-dependent splitting,
polarization singularity conversion, and z-dependent
polarization. We further discussed the propagation and
focusing properties of azimuthally broken vector vortex
beams. New ideas and developments are emerging at a
rapid pace, and it is clear that the OAM will provide new
opportunities for topological photonics, spin-photonics,
and spintronics.
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