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Abstract Doppler optical coherence tomography or
optical Doppler tomography (ODT) has been demonstrated
to spatially localize flow velocity mapping as well as to
obtain images of microstructure of samples simulta-
neously. In recent decades, spectral domain Doppler
optical coherence tomography (OCT) has been applied to
observe three-dimensional (3D) vascular distribution. In
this study, we developed a spectral domain optical
coherence tomography system (SD-OCT) using super
luminescent diode (SLD) as light source. The center
wavelength of SLD is 835 nm with a 45-nm bandwidth.
Theoretically, the transverse resolution, axial resolution
and penetration depth of this SD-OCT system are 6.13 µm,
6.84 µm and 3.62 mm, respectively. By imaging mouse
model with dorsal skin window chamber, we obtained a
series of real-time OCT images and reconstructed 3D
images of the specific area inside the dorsal skin window
chamber by Amira. As a result, we can obtain the clear and
complex distribution images of blood vessels of mouse
model.
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1 Introduction

Optical coherence tomography (OCT) is a non-invasive
and non-destructive optical imaging technology, first
proposed by Huang et al. in 1991 [1]. Compared with X-
Ray, ultrasound and magnetic resonance imaging, OCT is
called “optical biopsy” [2], because of its specific

advantages such as high resolution, high sensitivity and
real-time imaging. In 1991, Huang et al. obtained the
microstructure of human retina and the structure of
coronary artery wall successfully by building a time-
domain optical coherence tomography (TD-OCT) system
[1]. However, in this method, the length of the reference
arm is rapidly scanned over a distance that corresponds to
the imaging-depth range of the sample, leading to limited
imaging speed. Fourier-domain OCT (FD-OCT), which
has high signal-to-noise ratio (SNR) and high sensitivity,
was later developed [3–5].The depth information of the
sample is not obtained by mechanical scanning of the
reference arm but by Fourier transform based on the
detected spectral signal. According to the difference of
probing scheme, FD-OCT can be divided into two types,
spectral domain OCT [6] and swept source OCT [7,8]. So
far, research groups have made great efforts to improve
OCT by developing various functional expansions of
traditional OCT, such as Doppler OCT [9], polarization-
sensitive OCT [10] and molecular contrast OCT [11].
These developments have made OCT technology widely
applied in biomedicine [12–18], particularly in ophthal-
mology [19]. Doppler OCT can obtain high-resolution
images of tissue structure and hemodynamics simulta-
neously, combining Doppler effect with OCT technology.
Doppler OCT has been applied to the depth-resolved cross-
sectional flow imaging of tissues in vivo [20–24].
Furthermore, blood flow imaging of retina vessels was
also achieved by Doppler OCT [25,26]. These results were
based on TD-OCT system, in which mechanical scanning
of the reference arm exists. Compared with TD-OCT,
spectral domain optical coherence tomography system
(SD-OCT) has higher sensitivity [3,4] and the imaging
speed is 150 times faster than TD-OCT [27].Therefore,
researchers have focused on using FD-OCT system to
observe blood flow imaging of retina vessels [28–30].
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Wang’s group and Yatagai’s group have done a lot of
research on three-dimensional (3D) visualization of retinal
vessels. They developed high-speed SD-OCT system to
gain 3D images of the blood vessels in mouse brain, i.e.,
optical coherence angiography (OCA) [31,32]. Vakoc et al.
applied optical frequency domain imaging (OFDI) tech-
nology to detect the microenvironment of various tumor
models at varying sites in mice, gaining 3D depth-
projected vascular distribution of brain bearing tumor
and cross-sectional images of back implanted in the dorsal
skin fold chamber model with an MCaIV tumor [33].
However, high-resolution, 3D vascular distribution of the
mouse with dorsal skin window chamber has not been
obtained by SD-OCT system till now. Here, the mentioned
chamber implanted into the dorsal skin in mice [34] was
derived from Sandison [35] in order to investigate the
microcirculation. Because of repeated analysis of the
microcirculation over a period of time, this animal model
has been applied to assess not only the angiogenesis in a
variety of processes including endometriosis and tumor
growth, but also the early phases of preclinical develop-
ment of Bevacizumab [36,37].
In this study, we developed an SD-OCT system for

imaging mouse model with dorsal skin window chamber,
obtained a series of real-time OCT images and recon-
structed 3D images of the specific area inside the dorsal
skin window chamber mouse.

2 Experimental setup

OCT system is a low coherent system based on Michelson
interferometer. The schematic diagram of the system used
in this study is shown in Fig. 1.

The low-coherence light emitted from the broadband
light source enters the Michelson interferometer through
optoisolator. The function of optoisolator is to protect the
light source from reflected light. The beam is divided into
two parts by a 90/10 coupler via optical fiber and 90% of

the beam is guided to the sample arm and focused on the
sample after collimating mirror and galvanometer. The
light in the reference arm is focused on the mirror after
collimating mirror and lens. The high speed interferometer
receives interference signal produced by the reflected lights
from the sample arm and the reference arm. Finally, the
data is processed by computer using home-built software
in Labview.
The axial resolution and transverse resolution of the

spectral domain OCT is independent of each other. The
axial resolution δz is decided by coherence length lc,
namely center wavelength and 3 dB bandwidth of the
broadband source [38,39]. In the SD-OCT system, we used
a super luminescent diode (SLD) (Superlum) with a center
wavelength of 835 nm. The full width half maximum
(FWHM) of the SLD is 45 nm and the output power is 12
mW. According to these parameters, the axial resolution
can be calculated as follows:

δz ¼ lc ¼
2ln2

π
$
l20

Δl
¼ 2ln2

π
$
0:835� 0:835

45� 10 – 3 μm

� 6:84  μm, (1)

where l0 and Δl are the center wavelength and bandwidth
of the SLD, respectively. The output spectrum curve of
SLD is shown in Fig. 2.

The transverse resolution of the SD-OCT system
depends on the objective lens that is to focus the light
onto the sample according to Rayleigh criterion. The
sample arm consists of a collimating mirror (fc = 20 mm,
OZ optics), scanning galvanometer (6215H, Cambridge
Technology) and lens (fobj = 30 mm, DHC). The numerical
aperture (NA) of the optical fiber is 0.13. The transverse
resolution can be calculated as

Δx ¼ 4l0
π

$
fobj
d

¼ 4l0
π

$
fobj

2NA⋅fc

¼ 4� 0:835

π
$

30

2� 0:13� 20
  μm � 6:13  μm, (2)

Fig. 1 Schematic diagram of spectral-domain OCT system.
CMOS: complementary metal oxide semiconductor; PC: personal
computer

Fig. 2 Output spectrum curve of the optical source
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where d is the diameter of the light spot on the lens of the
sample arm.
High speed spectrometer plays an important role in SD-

OCT system. The quality of the images depends on the
scanning speed of the spectrometer. The high speed
spectrometer consists of achromatic collimating lens (fc =
60 mm, OZ optics), diffraction grating on the condition of
Littrow with a center wavelength of 830 nm and line per
mm of 1200 (Wasatch Photonics), near infrared achromatic
lens (f = 150 mm, TECHSPEC®NearIRdoublets, Edmun-
doptics) and a 12-bitline-scan CMOS camera with 4096
pixels (Basler sprint, SPL4096-140K). The pixel size and
line rate of the CMOS are 10 µm � 10 µm and 140 KHz,
respectively. According to the grating equation:

dðsin�0 þ sin�Þ ¼ ml, (3)

diffraction angle at center wavelength can be calculated by
Eq. (3). In general, m is considered as 1.

2dsin�0 ¼ ml0:

sin�0 ¼
1� 830� 10 – 6

2� ð1=1200Þ ¼ 0:498, �0 � 29:87°, (4)

where l0 and d are center wavelength and line number of
the grating, respectively. Spectral resolution of the spectro-
meter can be obtained based on above parameters. At first,
spectral resolution of the grating follows:

δlg ¼
l0

mN
¼ l0

m
�
D=ðdcos�0Þ

� ¼ l0dcos�0
mD

¼ 835� ð1=1200Þ � cos29:87

1� 2� 0:13� 60
nm

� 0:039  nm: (5)

Here, N is line number in the spot through collimating
mirror on the grating. D is the diameter of the spot, D ¼
2NA⋅fc:
Moreover, spectral resolution decided by pixel size p of

line-scan CMOS:

δlc ¼
p

fm=ðdcos�0Þ

¼ 10� 103 � ð1=1200Þ � cos29:87

1� 150
nm

� 0:04818  nm: (6)

Therefore, the spectral resolution of the high speed
spectrometer in our system is 0.04818 nm by comparing
Eq. (5) with Eq. (6). According to sampling theorem,
theoretically the imaging depth of this SD-OCT system
[4,5,40] in air is

Zmax ¼ l20

4δl
¼ 835� 835

4� 0:04818
nm � 3:62� 106nm

¼ 3:62 mm: (7)

3 Results and discussion

In the experiment, mice are bought from medical
laboratory animal center in Guangdong province. The
requirements are female BALB/c-nu mice of more than 8
weeks old and> 20 g to be fit for dorsal skin window
chamber. Dorsal skin window chamber model (the
diameter is 12 mm) is prepared when the mouse is in the
state of anesthesia, injected with 100 μL phenobarbital
solution [41].Complicated main vessels can be observed
with naked eye. Dorsal skin window chamber model is
shown as in Fig. 3. To make sure that the mouse model is in
focus, we adjusted the height of the sample stage and
obtained interference images simultaneously. At the same
time, there is a proper angle between the sample and the
horizontal plane to get suitable intensity from the reflected
light.

The skin of human and higher animals is composed of
cuticle, dermis and subcutaneous tissue. Dermis is located
deep in the cuticle, the outermost layer of human and
higher animals. There are abundant blood vessels,
lymphatic vessels, nerves, sweat glands and hair follicles
in the subcutaneous tissue (also called subcutaneous fat
tissue). Capillaries produced by blood vessels cannot be
seen with naked eyes due to their small size (6–9 µm). In
view of calculated resolution, capillaries at these sizes can
be obtained by this high-resolution SD-OCT system.
Figure 4 shows one set of representative OCT image and

reconstructed 3D image of the skin of the mouse back. The

Fig. 3 Dorsal skin window chamber model
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real-time cross-sectional image of blood vessels is shown
in Fig. 4(a), indicating the size of blood vessels intuitively.
Two blood vessels are marked with circles, and their
diameters are 150 and 38 μm respectively. The imaging
depth is about 610 μm. Reconstructed 3D image of the
same position by Amira is shown in Fig. 4(b). Figures 4(c)
and 4(d) show vascular distribution at two different depths.
Vascular distributions at different layers of the mouse skin
are different obviously. The size of the area in Fig. 4(a)
(marked in red circle) corresponds to the diameter of the
vessels in Figs. 4(b), 4(c) and 4(d).That is to say, the larger
the size of the area forms, the bigger the diameter of the
blood vessels is. Each image size is 1.3 mm �1.3 mm.

4 Conclusion

A SD-OCTsystem has been developed to image the skin of
the mouse in vivo. According to obtained OCT image and

3D image, complicated distribution of blood vessels exists
in the deeper layer of the mouse skin. To our knowledge,
this system can be further applied to observe vascular
distribution of other tissues in vivo. The changes of
vascular distribution of the mouse in different experiments
can be visualized for a certain period of time. This system
will provide a useful method for tumor research, e.g., to
observe tumor growth or drug delivery in tumor therapy.
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