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Abstract In this review, we discuss our recent theoretical
work on the nonlinear optical response of graphene and its
sister structure in terahertz (THz) and near-infrared
frequency regime. Due to Dirac-like linear energy-
momentum dispersion, the third-order nonlinear current
in graphene is much stronger than that in conventional
semiconductors. The nonlinear current grows rapidly with
increasing temperature and decreasing frequency. The
third-order nonlinear current can be as strong as the linear
current under moderate electric field strength of 104 V/cm.
In bilayer graphene (BLG) with low energy trigonal
warping effect, not only the optical response is strongly
nonlinear, the optical nonlinearity is well-preserved at
elevated temperature. In the presence of a bandgap (such as
semihydrogenated graphene (SHG)), there exists two well
separated linear response and nonlinear response peaks.
This suggests that SHG can have a unique potential as a
two-color nonlinear material in the THz frequency regime
where the relative intensity of the two colors can be tuned
with the electric field. In a graphene superlattice structure
of Kronig-Penney type periodic potential, the Dirac cone is
elliptically deformed. We found that not only the optical
nonlinearity is preserved in such a system, the total optical
response is further enhanced by a factor proportional to the
band anisotropy. This suggests that graphene superlattice is
another potential candidate in THz device application.

Keywords graphene, terahertz (THz) response, nonlinear
effect, photomixing

1 Introduction

1.1 Physical properties of graphene

Graphene is a one-atom thick, 2-dimensional honeycomb
structure made up of carbon atoms (Fig. 1). The single
layer was first isolated and systematically studied by
Novoselov et al. in 2005 [1,2]. The first theoretical study of
graphene however dated back to 1947. In his pioneering
work [3], Wallace presented that graphene is a gapless
semiconductor, whose valence band touches the conduc-
tion band at K and K′ points of its Brillouin zone (Fig. 2).
The most fascinating aspect of this touching point, or the
‘Dirac point’, is that the energy band is in a linear form of
Ek = �ÿvFk and hence the electrons around the Dirac
points behave like a massless ultra-relativistic fermions,
but moving with a much reduced ‘speed of light’ vF&
c/300 (c = vacuum speed of light) [1]. This aspect is
fundamentally different from the Schrodinger fermions Ek

= ÿ2k2/(2m)* in conventional semiconductors. Many
unusual physical phenomena arise due to the relativistic
quasiparticle dynamics. For example, the K point electrons
exhibit anomalous perfect tunneling effect despite the
potential barrier height and width [4]. This anomalous
tunneling behavior is related to the Klein tunneling of
massless spin-1/2 Dirac particles in quantum electrody-
namics [5]. The Klein tunneling was thought to be a
textbook example to illustrate the bizarre consequence of
Dirac equation. The scale-down condensed matter version
can now be realized in graphene [6,7]. Moreover,
geometrical asymmetry and applied magnetic field can
result in strong enhancement of optical and magnetic
properties [8–12].
Because of the relativistic dynamics, electron scattering

in graphene is strongly suppressed, and this results in
unusually high electron mobility [13,14]. It is believed that
electron mobility of 100000 cm2/Vs can be achieved in
high quality sample [15], suggesting a promising transistor
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application [16,17]. The massless Dirac fermion exhibits
another unusual behavior in the presence of a magnetic
field. The quantum Hall conductivity follows half-integer
steps �xy ¼ �4e2=hðN þ 1=2Þ, where h is the Planck
constant, [1,18,19] instead of the conventional integer-
multiple quantized conductivity in conventional semicon-
ductor. This is again due to the relativistic spectrum of the
K electrons where the E = 0 Landau level is shared by both
electrons and holes. Furthermore, the large energy
separation between the two lowest Landau levels allows
the quantum Hall effect to survive even at room
temperature [20]. The existence of a minimal direct current
conductivity in the absence of charge carrier is another
surprising result. The minimal conductivity has a well-
established experimental value of �min ¼ 4e2=h [1] yet its
physical origin is not well-understood since various
theoretical models [4,21–24] yield very different values
of σmin. It has been suggested that the many-body
interactions, wrinkling and ripples of the graphene sheet
and the formation of electron-hole puddles [25] could be
the possible underlying mechanisms. When interact with
photon, the massless Dirac fermion manifests itself as a
universal interband optical conductivity of e2/(4ÿ) [26–31].

Apart from the unusual electronic and optical properties,
electrons in graphene can be manipulated in completely
different ways. In graphene, the electron not only has spin,
but also possesses two additional degrees of freedom:
valley and pseudospin. Such additional degrees of freedom
arise from the fact that the low energy electron resides in
two K and K′ valleys and their relativistic nature is
described by a two-component pseudospinor wave func-
tion. Although still in the early conceptual stages, the
valley and pseusospin degree of freedoms in graphene

open up the possibilities of ‘valleytroics’ and ‘pseudospin-
tronics’ devices. The concept of ‘valleytronics’ was first
proposed in a nano-constricted device in which two
graphene sheets are connected by a narrow zigzag-edge
nanoribbon [32]. The electron transport across the junction
becomes valley-dependent and the degree of valley
polarization is tunable by a gate voltage. Many other
strategies have since been proposed. For example, valley-
dependent scattering by a line defect [33], spatial splitting
of valley current by the trigonally warped band structure at
high energy regime [34,35], tunneling barriers based on
gapped graphene and strain-engineered grapheme [36–38],
and the valley-dependent focusing and de-focusing effect
in bilayer graphene (BLG) n-p junction [39] can all be
utilized to produce valley polarization. In addition to the
valley degree of freedom, pseudospin magnetization can
be generated in graphene with a bandgap [40,41] or
spontaneously generated via electron-electron interaction
[42,43]. More importantly, the pseudospin magnetization
can be optically probed [42]. Pseudospin valves in a
graphene/superconductor/graphene heterostructure and in
a BLG electrostatic tunneling barrier [41,44] offer further
possibilities to manipulate the transport of the pseudospins.
In terms of device application, graphene is a ‘designer’

structure whose electronic properties can be tailor-made to
meet any device requirement. Graphene can be cut into
ribbons or be transformed into superlattices via electro-
static gating. The electronic properties of graphene
nanoribbon can be tuned by varying the width and the
type of its edges into armchair or zigzag configurations
[45–47]. For instance, a bandgap can be opened in
armchair graphene nanoribbon and the size of the bandgap
is tunable via the nanoribbon width [45,46]. In the case of
graphene superlattices [48–50], elliptical deformation of
the Dirac cone can be engineered without breaking the k-
linearity of the band structure.
Although it has only been 10 years since the first

isolation of graphene [2], myriads of unusual properties,
such as the strong suppression of weak localization [51–
53], thermoelectric transport [54–56], quantum spin Hall
effect [57], chiral superconductivity [58], just to name a
few, have been discovered and many more are still
continually emerging. It is therefore impossible to fully
cover all aspects of graphene in this brief overview.
Broader discussions of graphene can be found in several
classic review articles [15,59–62]. Finally, we remark that
in a new class of materials, i.e. the topological insulator
(TI), the surface states can also described by a Dirac cone.
Although it is not the scope of this paper to discuss the
physics of TI, it is worth-noting that many of the unusual
properties of graphene can be directly translated into TI
[63]. Together with the emerging single layer honeycomb
structures of group IV atoms such as silicene [64,65],
germanene [66], and stanene [67] (single layer silicon,
germanium and tin, respectively), it is not unreasonable to

Fig. 1 Graphene, an atomically thin layer of carbon atoms
arranged in honeycomb structure, a1 and a2 are the lattice unit
vectors. Red and green dots are atoms from two sublattices
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speculate that the physics of Dirac fermions shall play an
important role in the upcoming developments of con-
densed matter physics.

1.2 Nonlinear optical properties of graphene

We theoretically study the nonlinear optical properties of
graphene and its sister-structures in terahertz (THz) and
far-infrared (FIR) frequencies [68–71]. The motivation
behind these studies arises from two factors. THz wave
plays important role in the study of condensed matter since
many dynamical processes occur in the THz frequency
regime (approximately a few meV). THz is also an
invaluable tool in the field of astrophysics, telecommuni-
cation, non-destructive imaging and chemical/bio-mole-
cules identifications [72]. Unfortunately, THz frequency
situated right in between the optics and electronic regimes.
Efficient generation and detection of THz waves are
problematic because it is too high of a frequency via
electronic approach and too low of a frequency via
photonics approach. The hunt for an efficient mean of THz
generation and detection is therefore one of the ongoing
primary objectives. Second, exceptionally strong optical
response has been reported in graphene both theoretically
and experimentally [73–77]. The third-order nonlinear
susceptibility χ(3) in graphene is 108 stronger than that in a
bulk insulator [73–75]. Furthermore, Wright et al. [77] has
found that the THz/FIR interband optical conductivity can
be significantly enhanced by 3-photon nonlinear interband
optical processes under electric field strength in the order
of 103 V/cm. The rather weak 2.3% absorption (corre-
sponding to the universal conductivity e2/4ÿ) can hence be
overcome by the nonlinear optical absorption. Although
not directly observed in free standing single layer graphene
in THz range, giant nonlinear transmittance has experi-
mentally been observed in graphene dispersions [78,79]
and, recently, the third-harmonic generation in graphene on
a substrate in near-infrared frequency has been experi-
mentally demonstrated [80]. In BLG, second harmonic can
be generated by breaking the symmetry using an in-plane
electric field [81]. Although the 0.2 eV photon energy is
well-beyond the THz regime, the unusually large χ(2)&

105 pm/V highlights the potential of BLG in nonlinear
photonics application.
The optical nonlinearity in graphene is directly related to

its linear energy spectrum. The energy dispersion of the
massless Dirac fermion around the K point is written in the
form of εs = sÿvF|k| and the group velocity is vs = svFk̂
where k̂ is the unit vector of the wavevector k. The group
velocity is completely independent of wavevector k. From
a pedagogical point of view, the Dirac fermions are
expected to oscillate abruptly between the two values of
+ vF and – vF when driven by an external oscillating
electric field. This gives rise to a series of square-wave
optical response. Since a square function is rich in higher-
order harmonics, the massless Dirac fermion is expected to
exhibit strong nonlinear optical response. This is in
contrast to the Schrodinger electrons of εk = ÿ2k2/(2m)*
and group velocity v = ÿk/m*. The k-dependent group
velocity allows the optical current response to oscillate
continuously with the external electric field and hence the
anharmonicity is absent. Although Ishikawa has shown
that the highly anharmonic intraband current response (i.e.,
the square current response as discussed above) is reduced
by a interband component [82], nonlinear optical response
such as frequency up-conversion is still expected to be a
significant optical process in graphene.

2 Nonlinear optical response of graphene
and its related structures

2.1 Terahertz photon-mixing effect of gapless and gapped
single layer graphene

The nonlinear intraband optical response of gapless
graphene has been previously studied by Mikhailov et al.
using the semiclassical electron transport equation for two
limiting cases: (i) zero doping at finite temperature; and (ii)
finite doping at zero temperature [74,75]. The intermediate
regime between (i) and (ii), i.e., doped graphene at finite
temperature, is however left open and has not been
reported so far. The nonlinear response in this intermediate
regime is important since finite doping is usually present

Fig. 2 (a) Reciprocal lattice of graphene, b1 = a2 � ez/A, b2 = a1 � ez/A, A = (a1 � a2) ∙ ez; (b) band structure near the Dirac point
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due to crystal imperfection and impurities, and the
practical implementation of graphene-based device
requires finite temperature information. Furthermore,
nonlinear response usually occurs under strong external
field. The strong-field-drive Dirac fermion (SDF) popula-
tion redistribution due their externally perturbed dynamics
and non-equilibrium carrier heating becomes inevitable in
strong-field regime. Optical response of graphene with
these strong-field effects considered has however not been
reported. In this section, we fill in these gaps by
constructing the full temperature spectrum of the nonlinear
optical response of a finite-doped (�≠0) graphene single
layer in both gapless and gapped cases under both weak-
field and strongfield conditions. The dynamics of the
quasiparticles when perturbed by a strong electric field are
decomposed into linear and nonlinear components, and the
optical nonlinearity of the graphene is investigated.
The effective Hamiltonian of single layer graphene

around the K point is given as

Ĥ ¼ vF
0 p –

pþ 0

" #
, (1)

where the Fermi velocity is vF = 3ta/(2ÿ)& 106 m/s, t& 3
eV is the nearest neighbor hopping bandwidth, a& 0.142
nm is the carbon-carbon distance, and p� = px � ipy. The
energy eigenvalue of Eq. (1) gives rise to the linear energy
dispersion εs = svFp, where s = �1. This energy dispersion
results in a symmetric upper (s = + 1) and lower (s = – 1)
Dirac cones, representing electrons and hole states
respectively, and is analog to the charge conjugation
symmetry in quantum electrodynamics. The velocity
operator is given by v̂ ¼ ∂Ĥ=∂p. Following Feynman
[83], we write the expectation value of v̂ as v̂si ¼ ∂εs=∂ph .
This gives velocity eigenvector vs = svFp/p. We consider

a time-dependent applied electric field in the form of

Eðr,tÞ ¼
X
�

E�expfiðq�⋅r –ω�tÞg, (2)

where E�, q� and ω� are the amplitude, wavevector and
frequency of the � -th wave of the electric field. Ignoring
the weak magnetic component, the external field is
minimally coupled to the quasiparticle by performing the
substitution p! p – eA(r, t), where E(r,t) = –∂A(r, t)/∂t
and e is the electric charge. The velocity becomes

vs ¼ svF
pþ eA
pþ eAj j, (3)

and for simplicity, we denote u = eA. We perform a Taylor
expansion on vs in terms of the externally applied electric
field. Assuming that p>> u where u = – eA(r,t), we obtain
[68]

vð0Þs ¼ svF
p
p

� �
, (4)

vð1Þs ¼ svF
u
p
–
p
p

p$u

p2
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, (5)
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where vðiÞs represents i-th order velocity of graphene per
spin and per valley degeneracy. The zero-order velocity is
equal to the Fermi velocity vF which is consistent with the
unperturbed case. Note that the velocities only reverse their
directions for between the two Dirac cones of s = �1. The
magnitude remains unchanged due to the particle-hole
symmetry of the energy band structure.
The i-th order current is given by [68,84]

J ðiÞ ¼ e
X
s
!

2π

0
!

Λ

� – εph – kBT
d2pvðiÞs f ðεsÞ, (8)

where εph is the energy of the incoming photons, kB is the
Boltzmann constant, T is the temperature, and f (εs) is the
Fermi-Dirac distribution function. The integration cut-off
Λ is equal to the Fermi level µ at T = 0 K, and is arbitrarily
set to a large value of 0.5 eV for T> 0 K and µ> 0
numerical calculation. Up to room temperature, the Fermi-
Dirac distribution terminates the momentum integration
well before Λ and hence our choice of Λ is well-justified.
For µ< 0, Λ cut off the momentum integration at µ + kBT
to avoid the low momentum regime where p>> u fails.
Deep charge carriers cannot respond to the external
perturbation due to the unavailability of higher energy
states. We qualitatively approximate this by choosing a
lower momentum integration limit of µ – εs – kBT.

2.1.1 Linear optical response

The linear current density for µ> εph at T = 0 K, per spin
and per valley, is given by

J ð1Þ
T¼0 ¼ –

ie2

4πÿ

X
�

E�e
iðq�⋅r –ωtÞ: (9)

Including spin and valley degeneracy, the zero tempera-
ture linear current density is given as

J ð1Þ
T¼0 ¼ – i

e2

πÿ

X
�

E�expfiðq�⋅r –ω�tÞg: (10)

Equation (10) corresponds to a linear conductivity of

�
ð1Þ
T¼0 ¼ e2=πÿ. This is in agreement with the linear
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conductivity calculated using Kubo formula [27,85]. For
µ< 0, the current density reverses the direction since it is
now contributed by s = – 1 carriers. For T> 0 K, we
obtain

J ð1Þ
T ¼ – i

e2

πÿ
kBT

ÿω
ln 1þ exp 1þ ÿω

kBT

� �� �

�
X
�

E�expfiðq�⋅r –ω�tÞg, (11)

which reduces to Eq. (10) in the limit of T! 0.

2.1.2 Third-order nonlinear response

Due to the inversion symmetry of graphene, it is

straightforward to see that the second order velocity vð2Þs

does not generate any electric current. In fact, one can
immediately see this by examining Eq. (6). All of the terms

contained in vð2Þs are proportional to cos φ and hence will
not survive in the angular-integration of Eq. (8).
The third-order nonlinear current at T = 0 K can be

obtained as

J ð3Þ
T¼0 ¼ – is

e4v2F
8πÿ2�

X
�v�

ε�v�
� – ε�v�

� �
E�⋅EvE�

ω�ωvω�

� expfi½ðq� þ qv þ q�Þ⋅r – ðω� þ ωv þ ω�Þt�g,
(12)

where s = + 1( – 1) for µ> 0 (µ< 0) and � > ε�v� where
ε�v� ¼ ε� þ εv þ ε� is the sum of three incoming photon
energies. The magnitude of the zero temperature nonlinear
current density is the same for electron filling (µ> 0) and
hole filling (µ< 0) due to the up-down Dirac cones
symmetry. At finite temperature, the nonlinear current
density is obtained from

J ð3Þ
T ¼ – is

e4v2F
8πÿ2

X
�v�

E�⋅EvE�

ω�ωvω�
!dεpε2p

1

1þ exp
εp –�
kBT

� �
� expfi½ðq� þ qv þ q�Þ⋅r – ðω� þ ωv þ ω�Þt�g,

(13)

where for simplicity we have suppressed the integration
limit. We see that µ plays an important role in the finite
temperature current density of graphene. As shown in Eq.
(12), smaller µ generates stronger nonlinear current.
However, the assumption of p>> u in the derivation of
the nonlinear velocities is no longer valid if µ is too small
since this will involve charge carriers with momentum
comparable to u. For THz waves at room temperature, the
range of |µ| >

~
0.05 eV will be adequate for p>> u to hold

and we choose µ = 60 meV as the smallest Fermi-level
throughout this work. Experimentally, the Fermi level is

continuously tunable up to �(1~2) eV by an external gate
voltage [86] and hence our choice of µ is practically
achievable.
The numerical result of Eq. (13) is shown in Figs. 3 and

4. We observe three important and unusual features in the
nonlinear optical response: the third-order nonlinear
response is: (i) thermally enhanced up to room tempera-
ture; (ii) approximately inversely proportional to µ; and
(iii) asymmetric between µ> 0 and µ< 0. Feature (i) is due
to the thermal extension of the charge carrier lower-limit
µ – εµvl – kBT at higher temperature. Thermally created
vacancy at higher energy level allows more low-lying
charge carriers to be excited and this amplifies the
nonlinear current. However, it should be emphasized that
the nonlinear current does not grow indefinitely with
increasing temperature. At much higher temperature, the
charge carriers in the opposite Dirac cone contribute to and
opposite nonlinear current generation which eventually
reduces in the net nonlinear current. This reduction is not
observed in our case due to the largeness of µ we have
chosen, i.e., the nonlinear current is always contributed by
charge carriers in only one Dirac cone. For feature (ii), a
small µ results in nonlinear current contributed by low-
momentum charge carriers and this leads to the stronger
current density. The combine effect of (i) and (ii) causes the
superlinear growth of nonlinear current at µ = 60 meVand
T> 150 K. Feature (iii) is explained by the finite
temperature Dirac fermions population distribution in
graphene. Consider the µ is in an arbitrary magnitude of
µ = µ0. Switching the Fermi-level from µ = + µ0 to µ =
–µ0 is essentially equivalent to the mirror reflection of the
upper Dirac cone across the zero energy point into the
lower Dirac cone. However, the Fermi-Dirac is not
reflected, but is shifted downwards by an amount of 2µ0
and this breaks the overall up-down symmetry of the

Fig. 3 Temperature dependence of third order nonlinear current
density for µ< 0 at f = ω/(2π) = 1 THz (Ref. [63])
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nonlinear currents at µ = �µ0. When µ = + µ0, a larger
amount of low-lying s = + 1 electrons become excitable at
finite temperature and this significantly enhances the
nonlinear current, while in the case of µ = –µ0, larger
amount of deep s = – 1 electrons become excitable and the
nonlienar current enhancement is relatively weaker.
The strong nonlinear response of single layer graphene

is not surprising if we consider the quasiparticles dynamics
in graphene. The massless Dirac fermions around K point
is well-described by a ‘pseudospin’ Hamiltonian Eq. (1)
and this ‘pseudospin’ nature mimics the ‘real-spin’ Rsahba
spin-orbit interaction (RSOI) term in 2-dimensionally
electron gas confined in a quantum well structure
(2DEG) which has previously been shown to exhibit
exceptionally strong nonlinear response [87]. In such
system, the enhanced optical nonlinerity is caused by the
highly non-parabolic band structure induced by RSOI [88];
while in graphene, the linear (and hence highly non-
parabolic) Dirac conic band structure results in the same
enhanced optical nonlinearity. The linear optical response
is however much smaller in graphene (linear conductivity
in the order of quantum conductance e2/h) and this gives
rise to the relatively stronger optical nonlinearity in
comparison to 2DEG with RSOI.
Two conclusions can be readily drawn from the above

discussions. To achieve strong nonlinear optical effect in
graphene: (i) small µ is preferred since a low-lying electron
is strongly nonlinear; and (ii) electron filling µ> 0 is
preferred due to the broken Dirac fermion population
symmetry at finite temperature.
We remark that the total optical conductivity should

include both intraband and interband contributions. It can
however be seen that σinter is forbidden in few-THz regime
due to the largeness of µ. By the virtue of momentum
conservation, the requirement for vertical interband

transition can be written as 3εphoton> 2µ (where for
simplicity, the three incoming photons are assumed to
have the same energy εphoton). For µ> 0.06 eV, each
photon has to exceed 0.04 eV, or frequency higher than 10
THz, for vertical interband transition to become possible
and this is well beyond the few-THz regime considered
here. Therefore, it is reasonable to drop the σinter
contribution and to consider σintra as the sole contributor
to σtotal.

2.1.3 Critical electric field and photon-mixing effect

We now discuss the electric field strength required to create
non-negligible photon-mixing effect in graphene. We
define a critical field strength such that |J(3)|/|J(1)| = 1.
The physical importance of critical field is that it quantifies
the optical nonlinearity of a system by comparing both of
the linear and nonlinear response. A small critical electric
field represents strong optical nonlinearity because the
nonlinear response easily dominates over the linear
response by only a small electric field.
By combining Eqs. (10) and (12), we obtain the T = 0 K

critical field as

Ecðω,T ¼ 0 KÞ ¼ 2ω
vF

2�

e2
�

3
– ÿω

� �� �1=2
, (14)

where the two incident fields are assumed to have the same
intensity and polarization. For ω = 1 THz and µ = 0.1 eV,
the zero temperature critical field is approximately 104 V/
cm. This electric field strength is about one order of
magnitude larger than the critical electric field of the 3-
photon nonlinear interband conductivity in intrinsic
graphene [77].
At T> 0, the critical field is Ec(ω, T) = βEc(ω, T = 0 K)

where the temperature dependence is embedded in the
dimensionless parameter β:

β ¼ kBT

ÿω

ln 1þ exp
ÿω
kBT

þ 1

� �� �

J ð3Þ
T>0

��� ���= J ð3Þ
T¼0

��� ���
8>><
>>:

9>>=
>>;

1=2

: (15)

β describes the temperature dependence of the optical
nonlinearity in graphene. The temperature dependence of β
is plotted in Fig. 5. β exhibits contrasting behavior at low
and high temperature regime. At low temperature regime, β
increases with increasing temperature due to the stronger
linear current. At higher temperature, the rate of increase of
J(3) eventually exceeds J(1) and this leads to the peaking of
β, and further increment of temperature results in the
lowering of β. For µ = 60 meV, the β peaking is clearly
observable at T& 150 K. The room temperature Ec is
approximately 10% lower than Ec at T& 150 K. For µ =
0.1 eV and at room temperature, Ec is increased by about

Fig. 4 Temperature dependence of third order nonlinear current
density for µ> 0 at f = ω/(2π) = 1 THz (Ref. [63])
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60%, i.e., Ec& 2� 104 V/cm and this is consistent with the
experimental electric field strength where gigahertz waves
mixing occurred [54].
The nonlinear optical absorption in graphene creates an

oscillating current density J(3). This oscillation in turns
induces an electromagnetic wave giving rise to the well-
known four-wave mixing phenomenon. The strong non-
linear current density in graphene immediately suggests
the occurrence of strong four-wave mixing effect. The
strength of the electric field E(3) induced by the nonlinear
mixing of ω3 = 2ω1�ω2 can be estimated by solving
Maxwell’s inhomogeneous electromagnetic wave equation
,E(3) = (4π/c2)∂J(3)/∂t where , is the d’Alembert
operator. At distance far away from the graphene single
layer, the solution is approximately given by ∂2E(3)/
∂2t/∂J(3)/∂t and the corresponding third-order polariz-
ability is given as

χð3Þ ¼ e4v2F
8πÿ2�

ÿω3

� – ÿω3

� �
1

ω2ω3

1

ω1ε0

� �2

: (16)

2.1.4 Optical response of graphene in a strong electric field

In previous sections, the optical response is derived by
assuming that the Dirac fermion population is well

described by f(ε0) where ε0 ¼ vð0Þs ⋅p is the unperturbed
linear energy spectrum. Under strong-field condition, the
simple assumption of f(ε0) is however no longer valid since

the externally acquired dynamics Δε ¼
�
vð1Þs þ vð2Þs þ

vð3Þs

�
⋅p is no longer negligible. This additional dynamics

causes the Dirac fermions to redistribute themselves via
a completely different distribution function of
f ðε0Þ↕ ↓f ðε0 þ ΔεÞ. In this section, we study the optical
response of strong-field driven Dirac fermions (SDF) in
graphene with the strong-field induced carrier population
redistribution taken into account.
The dynamics of the SDF in graphene can be expressed

as

vð0Þs ⋅p↕ ↓

�
vð0Þs þ vð1Þs þ vð2Þs þ vð3Þs

�
⋅p ¼ ε0 þ Δε, (17)

where vð0Þs

��� ��� ¼ vF � 106m=s is the Fermi velocity, ε0 is the

linear energy dispersion and Δε ¼
�
vð1Þs þ vð2Þs þ vð3Þs

�
⋅p

represents the perturbed dynamics due to the strong field.
The Fermi-Dirac distribution function can be expanded for
small Δε. Up to third-order, the expansion yields

f ðεÞ ¼ f0 þ Δf ð1Þ þ Δf ð2Þ þ Δf ð3Þ, (18)

where

Δf ð1Þ ¼0,

Δf ð2Þ ¼
�
vð2Þs ⋅p

�
f #0,

Δf ð3Þ ¼
�
vð3Þs ⋅p

�
f #0,

(19)

where f #0 is the first derivative of the Fermi-Dirac
distribution function with respect to ε0. Equation (18) is
the strong-field Fermi-Dirac distribution which includes
nonlinear terms up to third-order in the external electric
field. We can then calculate the total current of the SDF by
the following equation:

J ¼ e
X
s
!

2π

0
!

Λ

� – εph – kBT
d2p
�
vð0Þs þ vð1Þs þ vð2Þs þ vð3Þs

�
�
f0 þ Δf ð1Þ þ Δf ð2Þ þ Δf ð3Þ

�
: (20)

Splitting the total current into linear and nonlinear
components, we obtain [68]

J ð1SÞ ¼ e
X
s
!

2π

0
!

Λ

� – εph – kBT
d2p
�
vð1Þs f0 þ vð0Þs Δf ð1Þ

�
,

J ð2SÞ ¼ e
X
s
!

2π

0
!

Λ

� – εph – kBT

d2p
�
vð2Þs f0 þ vð0Þs Δf ð2Þ þ vð1Þs Δf ð1Þ

�
,

J ð3SÞ ¼ e
X
s
!

2π

0
!

Λ

� – εph – kBT

d2p
�
vð3Þs f0 þ vð0Þs Δf ð3Þ þ vð1Þs Δf ð2Þ þ vð2Þs Δf ð1Þ

�
,

(21)

Fig. 5 Temperature dependence of β at f = ω/(2π) = 1 THz. β
exhibits contrasting behavior at low and high temperature regimes
[68]
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where the superscript (S) emphasizes the optical response

of SDF. The term J ðiwÞ ¼ e
X

s!d
2pvðiÞs f0 is the weak-field

Dirac fermions optical response. After some algebra, we
obtain

J ð1SÞ ¼ J ð1wÞ, (22)

J ð2SÞ ¼ 0, (23)

J ð3SÞ ¼ J ð3wÞ þ J ð3#Þ: (24)

The superscript (S) and (w) emphasize the optical
response of SDF and weak-field Dirac fermions respec-
tively. The consequences of Eqs. (22) and (23) are quite
surprising: the linear and second-order nonlinear optical
responses of graphene remain unchanged although the
whole SDF population has redistributed themselves. This
behavior can be understood by considering the nature of
the strong-field induced population redistribution phenom-
ena. Such process is a description of how strongly the
Dirac fermions respond to an external perturbation and the
degree of redistribution depends on the coupling between
the externally acquired dynamics and the unperturbed
dynamics of Dirac fermions, i.e., vexternal ∙p. For first-order
response, it can be seen that the externally acquired first-
order dynamics is completely decoupled from the

unperturbed dynamics, i.e., vð1Þs ⋅p ¼ 0. As a result, this
orthogonality ensures that the linear response of graphene
is always protected from the strong field effect. For second-

order nonlinear response, the second-order coupling vð2Þs ⋅p
is finite and one would intuitively expect a finite second-
order current to occur. This is however not the case as the
additional second-order term vanishes after performing
angular integration. In this case, although Dirac fermions
are second-order-ly perturbed and redistributed, the crystal
itself remains unaffected and retains its inversion symme-
try. Therefore, second-order nonlinear response is still zero
in the strong-field regime.
At T = 0 K, the third-order nonlinear optical response of

SDF is

J ð3íÞ
T¼0 ¼ – is

X
�v�

E�⋅EvE�

ω�ωvω�

e4v2F
8πÿ2�

� expfi½ðq� þ qv þ q�Þ⋅r – ðω� þ ωv þ ω�Þt�g:
(25)

Finally, in the general case of T> 0 K, we have

J ð3#Þ ¼ J ð3íÞ
T¼0

�

kBT
!dp

p

exp
ε0 –�
kBT

� �

exp
ε0 –�
kBT

� �
þ 1

� �2 : (26)

2.1.5 Critical electric field in the strong-field regime

At T = 0 K, the critical electric field of strongly-driven
massless Dirac fermion in graphene can be obtained by
directly taking the ratio of the linear and nonlinear current
densities derived in previous sections. This gives

EðSÞ
c ðT ¼ 0Þ ¼ 2ω

vF

2ÿω

e2
ð� – 3ÿωÞ

� �
: (27)

For 1 THz and µ = 0.1 eV, EðSÞ
c ðT ¼ 0Þ ¼ 3300 V=cm

and is 3 times smaller than that of the weak-field response
(&104 V/cm). At finite temperature, we obtain

EðSÞ
c ðTÞ ¼ βðSÞðTÞEðSÞ

c ðT ¼ 0Þ, where the dimensionless
strong-field βðSÞðTÞ is given as

βðSÞðTÞ ¼ kBT

ÿω

ln 1þ exp
ÿω
kBT

þ 1

� �� �

J ð3SÞ
T>0

��� ���= J ð3SÞ
T¼0

��� ���
8>><
>>:

9>>=
>>;

1=2

: (28)

It can be seen in Fig. 6 that EðSÞ
c is significantly lower

than weak-field Ec over a wide temperature regime from T
= 0 K to T = 600 K. This indicates the stronger optical
nonlinearity of SDF in comparison to the usual Dirac
fermions. The stronger optical nonlinearity of SDF is due
to the fact that the third-order nonlinear response is

amplified by J ð3#Þ while the linear response remains
unchanged.
We now discuss the optical response due to non-

equilibrium hot Dirac fermions in graphene. The hot Dirac
fermions in graphene are short-lived especially in the case
of high lattice temperature where stronger electron-phonon
coupling provides efficient pathway for the relaxation [89–

Fig. 6 Critical field of EðSÞ
c at f = ω/(2π) = 1 THz and µ = 0.1 eV.

Weak-field critical field Ec is also shown [68]
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91]. Under weak-field condition, Dirac fermions rapidly
thermalize themselves with the lattice, i.e., T = Tlattice. In
strong-field regime, the non-equilibrium heating of SDF
lifted the SDF temperature from lattice temperature and
hence the temperature terms in Eqs. (22) and (24) has to be
replaced by T! Thot where Thot is the hot SDF temperature
and Thot>Tlattice. For critical field varies between 103 to
104 V/cm, the hot SDF temperature reaches between Thot =
350 K to Thot = 600 K [92]. In contrast, equilibrium Dirac
fermions are relatively ‘cold’ since the lattice temperature
in most of the practical application is only up to Tlattice =
300 K. It can be seen from Fig. 7 that the nonlinear current
of hot SDF in 350 K< Thot< 600 K is generally stronger
than that of the cold equilibrium Dirac fermions where
Tlattice< 300 K.

2.1.6 Nonlinear optical response of gapped graphene in a
strong electric field

For completeness, we briefly discuss the nonlinear
intraband conductivity of gapped graphene. The Hamilto-
nian of gapped graphene in low energy regime is given as

Ĥ ¼ –Δ vFp
þ

vFp – Δ

" #
, (29)

where Δ is the onsite energy difference in the sublattice A

and B respectively. The energy eigenvalue is given by εs ¼
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fp

2 þ Δ2
p

indicating a bandgap opening of 2Δ at the
Dirac point. Similarly, up to third-order in external field,
the strong-field perturbed carrier velocities can be written
as

v 0ð Þ
s ¼ s

vFpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Δ2

p ,

v 1ð Þ
s ¼ s

vFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Δ2

p u – p
p⋅u

p2 þ Δ2

� �� �
,

v 2ð Þ
s ¼ s

vFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Δ2

p –
p
2

u2

p2 þ Δ2 – u
p⋅u

p2 þ Δ2

�

þ3p
2

p⋅u

p2 þ Δ2

� �2   �,
v 3ð Þ
s ¼ s

vFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Δ2

p –
u
2

u2

p2 þ Δ2 þ 3u2p
2

p⋅u

p2 þ Δ2

�

þ3u

2

p⋅u

p2 þ Δ2

� �2

–
5p

2

p⋅u

p2 þ Δ2

� �3  �:

(30)

The carrier dynamics becomes ε = εs + Δε where εs ¼
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fp

2 þ Δ2
p

is the unperturbed energy spectrum and Δε

¼
�
vð1Þs þ vð2Þs þ vð3Þs

�
⋅p is the field-induced energy chan-

ged. In strong-field case, the carrier population redistribute
themselves according to

f ðεs þ ΔεÞ ¼ f0 þ Δf1 þ Δf2 þ Δf3, (31)

where

Δf1 ¼ v 1ð Þ
s ⋅p

� �
f #0,

Δf2 ¼ v 2ð Þ
s ⋅p

� �
f #0 þ

v 1ð Þ
s ⋅p

� �2
2

f $0,

Δf3 ¼ v 1ð Þ
s ⋅p

� �
f #0 þ v 1ð Þ

s ⋅p
� �

v 2ð Þ
s ⋅p

� �
f $0

þ
v 1ð Þ
s ⋅p

� �3
6

f %0:

We now write the current densities as

Jð1Þ ¼ Jð1wÞ þ Jð1sÞ,

Jð2Þ ¼ Jð2wÞ þ Jð2sÞ,

Jð3Þ ¼ Jð3wÞ þ Jð3sÞ,

(32)

where the superscript (w) and (s) denote weak-and strong-
field term respectively. Using similar strategy as discussed
in previous sections, we obtain the T = 0 K total responses

J ð1Þ
T¼0 ¼ – s

e2E
πÿ

½xþ 1þ ΔωΔ�ð1 –Δ2
�Þ�, (33)

J
ð2Þ
T¼0 ¼ 0, (34)

J
ð3Þ
T¼0 ¼

sv2Fu
3

8πÿ2�
ðyþ 1 –Δ2

� þ 59Δ4
� – 177Δ

6
�

þ 208Δ8
� – 90Δ

10
� Þ, (35)

Fig. 7 Temperature dependence of strong-field third order non-
linear current density at f = ω/(2π) = 1 THz. Note that T = Tlattice if
non-equilibrium heating is ignored and T = Thot if non-equilibrium
heating is considered. Since Thot> Tlattice, the nonlinear optical
response is significantly stronger if carrier heating is considered
[68]
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where the weak-field term is represented by x and y, which
can be explicitly written as

x ¼
�

ÿω

1þ Δ
�

� �2� �1=2 –
�

ÿω
– 1

1þ Δ
� – ÿω

� �2� �1=2 , (36)

and

y ¼ �

� – εph

1þ 2Δ
� – εph

� �2

1þ Δ
� – εph

� �2� �5=2 –

1þ 2Δ
�

� �2

1þ Δ
�

� �2� �5=2 ,

(37)

where εph is the energy sum of the three photons. By
solving the current integral in Eq. (8), one can show that

the second order nonlinear current is zero since vð2Þs is an
odd function of f (see Eq. (30)). One major difference
between gapless and gapped graphene is that both of the
linear and third-order nonlinear current density are altered
by a strong electric field in gapped graphene whereas in
gapless graphene, only the third-order nonlinear current
density is altered. The third-order nonlinear conductivity at
finite temperature is evaluated numerically. The tempera-
ture and bandgap dependence of the intraband third-order
nonlinear current density at f = 1.5 THz and µ = 0.12 eV is
shown in Fig. 8. Unlike the gapless graphene (Δ! 0)
which exhibits enhanced nonlinear third-order nonlinear
optical response at elevated temperature, the third-order
nonlinear response of gapped graphene is sensitively
influenced by Δ and temperature. Due to the interplay
between the bandgap opening and carrier thermal excita-
tion, two distinct nonlinear optical response ‘hotspots’, in
which an amplification factor of & 3.5, are created at two
regimes: (i) low temperature with large Δ; and (ii) high
temperature with small Δ. These ‘hotspots’ are connected

by a region in which the nonlinear optical response is two
times higher than the linear optical response.
The low temperature hotspot (i) indicates that the

bandgap opening in graphene effectively enhances the
nonlinear response. The nonlinear response enhancement
due to bandgap opening in graphene also occurs in the
interband nonlinear optical response [70]. This suggests
that both of the interband and the intraband optical
absorption are universally enhanced by the bandgap
opening in graphene. At very large bandgap, the nonlinear
optical response however decreases. This is because the
nonlinear velocity component is approximately / p – 3. A
large bandgap destroys low momentum states and hence
severely degrades the nonlinear optical response. The high
temperature hotspot (ii) is a thermal effect. The thermal
excitation vacates states beneath the Fermi level, allowing
deeper charge carriers to become optically excitable. At
very high temperature, the thermally excitable charge
carrier population extends to the edge of the bandgap. Any
further increment of the temperature does not increase the
optically excitable charge carriers. On the other hand, the
overall charge carrier momentum is elevated thermally and
the p–3 reduction of the nonlinear velocity takes place. The
combination of these two aspects results the high
temperature degradation of the nonlinear optical response.

2.2 Bilayer graphene

In this section, we study the nonlinear interband optical
response in BLG in the frequency regime of THz to FIR.
The interband optical response is obtained by using a
quantum mechanical treatment that couples the BLG
quasiparticle to a time-dependent electric field [77]. We
expressed the light-dressed electron wave function as an
infinite sum in terms of the number of photons coupled to
the massless Dirac fermion. This allows us to explicitly
construct the nonlinear optical current density up to any
arbitrary order in the external electric field.
We show that the optical response of BLG is

significantly enhanced due to the third-order nonlinear
process. The nonlinear effects are particularly strong in the
low frequency regime, which covers the technologically
important frequency band of THz to FIR. More impor-
tantly, the field intensity required for the onset of nonlinear
response is rather low, indicating that BGL is an excellent
material for nonlinear optics and photonics application.
The third-order nonlinear optical response is composed of
two terms: (i) single-frequency term which corresponds to
the simultaneous absorption of two photons and the
emission of one photon; and (ii) triple-frequency term
which corresponds to the simultaneous absorption of three
photons. Both of (i) and (ii) become comparable to the
linear optical response at very moderate electric field of
103 V/cm which is well within the experimental achievable
range in laboratories. Furthermore, we investigate the
temperature dependence of the nonlinear optical response.

Fig. 8 Δ and temperature dependence of the third-order non-
linear current density [68] at f = ω/(2π) = 1.5 THz and µ = 0.12 eV
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At room temperature, we found that the electric field
required to produce nonlinear optical response comparable
to the linear one is reduced to 102 V/cm. This thermally
enhanced optical nonlinearity is not found in single layer
graphene. This suggests that BLG is a preferred structure
for developing graphene-based nonlinear photonics and
optoelectronics device.

2.2.1 Recursion equations for n-photon-electron coupling

We consider the case where a time-dependent electric field
E(t) = Eeiωt is applied along the x-axis. We start with the
low energy effective Hamiltonian of BLG in K valley [93–
95]:

H ¼ α
0 p – þ eAð Þ2

pþ þ eAð Þ2 0

 !

– β
0 pþ þ eA

p – þ eA 0

 !
, (38)

where p� = px�ipy, A ¼ E

iω
eiωt, α = 1/(2m*), m* =

0.033me, and β = vF& 105 m/s [95]. Note that in Eq. (38),
we have performed a Peierls substitution of p + eA. The
Hamiltonian can be rearranged to the following form

H ¼
0 Y – þ eE

iω
X – e

iωt – α
e2E2

ω2 ei2ωt

Yþ þ eE

iω
Xþeiωt – α

e2E2

ω2 ei2ωt 0

2
664

3
775, (39)

where for simplicity, we denote

X� ¼ 2αp� – β, (40)

Y� ¼ αp2� – βp�: (41)

The electron-photon coupled wave function can be
written as an infinite sum in terms of the number of
photons:

ψðp,nÞ ¼
X1
n¼0

anðpÞ
bnðpÞ

 !
eiðnω – ε=ÿÞt, (42)

where (an(p), bn(p))
T are the spinor components represent-

ing n-photon coupling of the electron. The time derivatives
of the wave function is

∂ψ
∂t

ðp,nÞ ¼
X1
n¼0

iðnω – ε=ÿÞ
anðpÞ
bnðpÞ

 !
eiðnω – ε=ÿÞt: (43)

The spinor components can be obtained by solving the

Schrodinger equation iÿ
∂ψ
∂t

¼ Hψ. Combining Eqs. (38)

and (43) with the Schrodinger equation, we have

X1
n¼0

0 Y – þ eE

iω
X – e

iωt – α
e2E2

ω2 ei2ωt

Yþ þ eE

iω
Xþeiωt – α

e2E2

ω2 ei2ωt 0

2
6664

3
7775

an pð Þ
bn pð Þ

 !
ei nω – ε=ÿð Þt

¼
X1
n¼0

ε – nÿωð Þ
an pð Þ
bn pð Þ

 !
ei nω – ε=ÿð Þt:

(44)

The eiωt and ei2ωt terms cane be absorbed into the spinor
components to obtain an – 1, an – 2 and bn – 1, bn – 2,
respectively. Due to the off-diagonal nature of the
Hamiltonian in Eq. (38), the upper and the lower spinor
components an and bn are coupled and two recursion
equations can be obtained

ðε – nÿωÞan ¼ Y – bn þ
eE

iω
X – bn – 1 – α

e2E2

ω2 bn – 2,

ðε – nÿωÞbn ¼ Yþan þ
eE

iω
Xþan – 1 – α

e2E2

ω2 an – 2:
(45)

The above equation contains information of all multiple
photon processes in intrinsic graphene. The recursion
relation couples the n photon processes to the n – 1 photon

processes. In general, we can write

nÿωðnÿω – 2εÞan ¼
eE

iω
½X – ðε – nÿωÞbn – 1 þ XþY – an – 1�

– α
e2E2

ω2 ½Y – an – 2 þ ðε – nÿωÞbn – 2�,
(46)

nÿωðnÿω – 2εÞbn ¼
eE

iω
½X –Yþbn – 1 þ Xþan – 1ðε – nÿωÞ�

– α
e2E2

ω2 ½ðε – nÿωÞan – 2 þ Yþbn – 2�:
(47)
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For n = 0, there is no photon. The spinor components can
be solved to obtain

a0 ¼
Y –

ε
ffiffiffi
2

p , (48)

b0 ¼
1ffiffiffi
2

p , (49)

where ε is the energy dispersion as given by

ε ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
YþY –

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2p4 – 2αβp3cos3�þ β2p2

q
: (50)

The n = 0 no-photon spinor components are in
agreement with the single particle eigenfunction of BLG
[95]. For n = 1, we obtain

a1 ¼
eE

i
ffiffiffi
2

p
ÿω2εðÿω – 2εÞ½εðε – ÿωÞX – þ XþY

2
– �, (51)

b1 ¼
eE

i
ffiffiffi
2

p
ÿω2εðÿω – 2εÞ½εX –Yþ þ ðε – ÿωÞXþY – �: (52)

This gives the spinor components of one-photon
coupling. The two-photon terms can be recursively built
by combining a0, b0 and a1, b1 into Eq. (45), and so on.

2.2.2 Optical current operator and density

We now construct the current density created by the
external time-dependent electric field. The velocity
operator in x-direction, vx =∂H/∂px, is given by

v̂x ¼ 2α
0 p – þ eAð Þ

pþ þ eAð Þ 0

 !
– β

0 1

1 0

 !

¼ v̂A þ v̂B, (53)

where

v̂A ¼ 2α
0 p – þ eAð Þ

ðpþ þ eAÞ 0

 !
, (54)

v̂B ¼ – β
0 1

1 0

 !
, (55)

where v̂A originates from the p quadratic term of the
Hamiltonian Eq. (38) and v̂B originates from the p linear
term. In single layer graphene, the velocity operator is only
contains v̂B. In BLG, the interlayer coupling creates an
additional v̂B.
The total x directional optical current operator is given

by

ĵ ¼ – eψyv̂ψ ¼ – e ψyv̂Aψ þ ψyv̂BψÞ,
�

(56)

where the wave function is given by Eq. (43). The total
current density can be obtained by integrating Eq. (56) in
p-space, i.e.,

J ¼ 1

ð2πÿÞ2ℜ!dp̂jNðεÞ, (57)

where the temperature dependence of the total current
density is encoded in N(ε) = f( – ε) – f(ε) = tanh(ε/2kBT).
Since ψ in Eq. (56) is a linear superposition of the spinor
components n-th order, we can selectively construct Jn in
any arbitrary order n in the external electric field. For
example, the n = 1 linear optical current operator is

j1 ¼ ĵ
ðAÞ
1 þ ĵ

ðBÞ
1 þ ĵ#1, (58)

where

ĵ
ðAÞ
1 ¼ – 2eα½ða1b*0pþ þ b1a

*
0p – Þ þ ða*1b0pþ þ b*1a0p – Þ�,

(59)

ĵ
ðBÞ
1 ¼ eβða*0b0 þ b*0a0Þ, (60)

and

ĵ#1 ¼
E

iω
ða*0b1 þ b*0a1Þ þ c:c: (61)

The single-photon linear optical current density is hence
given by

J1 ¼
1

4π2ÿ2ℜ!̂j1pdpd�: (62)

It is obvious that the linear optical current is made up of
the multiples of n = 1 and n = 0 spinor components (e.g.,
a*0b1 since it is a one-photon process. For the third-order
nonlinear optical response, the three-photon process can be
either composed of the multiples of n = 0 and n = 3 spinor
components or the n = 1 and n = 2 spinor components.
These respectively represent optical processes of simulta-
neous three-photon absorption and the simultaneous two-
photon absorption followed by one-photon emission. J3 is
therefore composed of a single-frequency term/ eiωt and a
triple-frequency term / ei3ωt.

2.2.3 Linear optical response

The frequency dependence of the linear optical conductiv-
ity is plotted in Fig. 9. There is a conductivity peak
corresponding to the singularity in the density of states
when the low energy Dirac pockets joint together [94].
Furthermore, it can be seen that in the limit of ω! 0, the
conductivity approaches 6σ0 where σ0 = πe2/2h = e2/4ÿ.
This is in agreement with the linear response result
obtained from the Kubo formula [24]. Several values of the
interlayer coupling strength α is chosen, and the low
frequency conductivity is always 6σ0. As suggested by
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Cserti et al., the universal minimum conductivity of 6σ0
regardless the interlayer coupling strength is of topological
origin [24].

2.2.4 Nonlinear optical response

The nonlinear optical response is numerically evaluated. In
Fig. 10, we plot the nonlinear conductance versus
frequency in unit of 6σ0 for two different temperatures.
The electric field is 1000 V/cm. All nonlinear terms
decrease rapidly with frequency. This is expected as linear
response dominates at high frequencies in almost all
systems. For BLG, the nonlinear response at single
frequency is about five times stronger than frequency
tripled terms.

Figure 11 shows the temperature dependent nonlinear
conductance at a field of 600 V/cm and at a frequency of 1
THz. At low temperature, the nonlinear conductance
exceeds the linear conductance. The σ3(ω) is greater than
the linear conductance in the whole temperature regime.
The all important σ3(3ω) stays as the same as the linear
conductance even at room temperatures.

There are two critical electric field strengths, Ec(ω) and
Ec(3ω), at which the nonlinear response equals the linear
response. Figure 12 shows the frequency dependence of
the critical fields at zero and room temperature. Within the
frequency range 0 – 3 THz, the critical fields are well
within the field strength achievable in a laboratory. At f =
ω/2π = 1 THz, Ec(ω) = 1100 V/cm at zero temperature and
800 V/cm at room temperature, and Ec(3ω) = 4700 V/cm at
zero temperature and 3000 V/cm at room temperature. This
is comparable to the nonlinear effect in single layer

Fig. 9 Frequency dependence of the linear optical conductivity
at different interlayer coupling strength. Dotted curve: 0.1α,
dashed curve: 0.5α, solid curve: α, dash-dotted curve: 1.5α, where
α = 1/(2m*) and m* = 0.033me [95]. The low frequency
conductivity always approach 6σ0 regardless the strength of the
interlayer coupling [69]

Fig. 10 Frequency dependence of the third-order nonlinear
optical conductivities at zero and room temperatures [69]. The
electric field strength is 1000 V/cm

Fig. 11 Linear and nonlinaer conductances vs. temperature for
frequency [69] of 1 THz. The electric field is 600 V/cm

Fig. 12 Frequency dependent critical fields at zero and room
temperatures [69]
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grapheme [77]. This result suggests that interlayer
coupling and doubling the carrier numbers in BLG do
not reduce the nonlinear effect. If this trend is maintained
up to a few layers, the potential for developing graphene-
based nonlinear devices can be significantly expanded. The
small cusp at low frequency is due to a singularity in the
density of states [94], which gives rise to a large value of
linear current.
In Fig. 13, we present the temperature dependence of the

critical field. The rapid decrease in the critical field at low
temperature is mainly due to the decrease in linear current.
The sole contribution to the linear current is frequencies,
the contribution to the total nonlinear current from the
central Dirac points and the three satellites Dirac points can
be separated. We found that for both σ3(ω) and σ3(3ω), the
contribution from the central Dirac point is less than 10%
while each satellite Dirac point contributes around 30% of
the total nonlinear current. This is a clear indication on the
connection between the trigonal warping and nonlinear
optical processes in BLG since the existence of the satellite
Dirac point is a unique signature of the low energy trigonal
warping effect.

2.3 Semihydrogenated graphene

We now investigate the optical response in SHG in THz
frequency regime. In general, for systems with a finite gap,
the linear response, or one photon process for frequency
below the bandgap Δ, is forbidden. However, multiphoton
processes can still occur for frequencies below the gap.
The strength of such nonlinear response is usually very
weak. We found that the opening of a band gap at the Dirac
point leads to a very strong nonlinear response below the
gap. In fact, the low frequency nonlinear conductance can
be as strong as the universal conductance in intrinsic

graphene under a rather moderate electric field of the order
of 103 V/cm. This result is particularly useful for develop-
ing applications in nonlinear optics and nonlinear photo-
nics since the linear process is fully suppressed in this
frequency regime. Furthermore, we found that the non-
linear optical response at the onset frequency of the
nonlinear subgap conductivity peak is universally
enhanced by a factor of 31/13 & 2.38 regardless the
value of Δ. This suggests that this enhancement is related
to the topological changes in the energy band structure of
Dirac quasiparticles when a bandgap is created.

2.3.1 Recursion equations and linear optical current density

The interband optical conductivity is calculated by
recursively solving the n-photon coupled spinor compo-
nents in the presence of an external electric field. We first
construct the recursion equations for the n-photon coupled
spinor components. In the tight-binding approximation, the
Hamiltonian for SHG under a time-dependent electric field
along the x-axis Ee–iωt can be written as

H ¼
–Δ=2 v0 p – þ eAð Þ

v0 pþ þ eAð Þ Δ=2

 !
, (63)

where p� = px � ipy, and A ¼ E

iω
eiωt. The on-site energies

of the A-sublattice and B sublattice are –Δ/2 and Δ/2,
respectively. This creates a bandgap opening of Δ at the
Dirac point. The quasiparticle is equivalent to a massive
Dirac fermion in this case.
We now write the two-component wave function in

terms of two spinor components an(p), and bn(p):

ψðpÞ ¼
X1
n¼0

anðpÞ
bnðpÞ

 !
eiðnω – ε=ÿÞt: (64)

By solving the Schrodinger’s equation, we obtain the
following coupled recursion equations:

nωÿðnωÿ–2εÞan¼
eEv0
iω

ε – nωÿ –
Δ
2

� �
bn – 1þv0p – an – 1

� �
,

nωÿðnωÿ–2εÞbn¼
eEv0
iω

ε – nωÿþΔ
2

� �
an – 1þv0pþbn – 1

� �
:

(65)

Any higher order spinor components can hence be
recursively constructed.

2.3.2 Linear and nonlinear optical responses

As discussed in previous sections, the optical current
operator and the current density can be constructed using
Eqs. (56) and (57). We found that the linear optical

Fig. 13 Temperature dependent critical fields for frequency [69]
of 1 THz
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conductivity, σ1, in SI unit is given by

�1ðωÞ ¼
e2

4ÿ
1þ Δ2

ω2ÿ2

� �
tanh

ωÿ
4kBT

� �
Θðωÿ –ΔÞ: (66)

Note that the step-function Θðωÿ –ΔÞ function forbids
any linear optical process to occur in the subgap regime
[96]. The third-order nonlinear optical conductivities

�3ðωÞ ¼ �0
e2E2v20

ω3ÿ ωÿ þ Δ
2

� � 2þ Δ
ωÿ

þ Δ2

ðωÿÞ2 þ
Δ3

2ðωÿÞ3
�

–
3ðΔÞ4
8ðωÿÞ4 –

3Δ5

16ðωÿÞ5
�
� tanh

ωÿ
2kBT

� �
Θðωÿ –ΔÞ,

(67)

and

�3ð3ωÞ ¼ �0
e2E2v20
ω4ÿ2 X1tanh

ωÿ
4kBT

� �
þ X2tanh

ωÿ
2kBT

� ��

þX3tanh
3ωÿ
4kBT

� �  �Θð3ωÿ –ΔÞ, (68)

where σ0 = e2/4ÿ and

X1 � –
1

48
13þ 2Δ2

ðωÿÞ2 þ
Δ4

ðωÿÞ4
� �

,

X2 �
1

3
2 –

Δ2

ðωÿÞ2 þ
Δ4

8ðωÿÞ4
� �

,

X3 � –
1

48
45 –

14Δ2

ðωÿÞ2 þ
Δ4

ðωÿÞ4
� �

:

(69)

When Δ! 0, the above equations reduces to the usual
graphene conductivities [77], i.e.,

�3ðωÞ↕ ↓�0
e2E2v20
ω4ÿ2 tanh

ωÿ
2kBT

� �
� 2, (70)

�3ð3ωÞ ¼ �0
e2E2v20
ω4ÿ2 –

13

48
tanh

ωÿ
4kBT

� �
þ 2

3
tanh

ωÿ
2kBT

� ��

–
45

48
tanh

3ωÿ
4kBT

� �  �: (71)

In Fig. 14, we plot the optical conductance versus
frequency for a typical value of Δ = 0.03 eV . The on-site
energy due to semihydrogenation removes the universal
conductance. For ÿω<Δ, the linear conductance is zero
for any temperature by the virtue of energy conservation.
The third-order current at single frequency, σ3(3ω), is also
zero for ÿω<Δ. The triple-frequency third-order term
σ3(3ω) persists to a low frequency of ÿω = Δ/3. The

nonlinear effect in SHG is unique in that the response peak
of the linear term and frequency tripled term is well
separated by δÿω = 2Δ/3. This provides a useful
mechanism for two-color excitation and detection, one
color is associated with the linear response and the other is
associated with the nonlinear response. The relative
intensities of the two colors can be tuned with the electric
field. At a rather moderate electric field of 3600 V/cm, the
magnitude of two peaks is roughly the same at 77 K. At
room temperature, the peak in linear conductance
disappears while the nonlinear conductance still exhibits
a resonance.
We now discuss one interesting behavior of the

nonlinear response peak. We compare the σ3(3ω) at the
optical response peak with that of the gapless graphene at
the same frequency. The ratio at T = 0 K is given by
σ3(3ω)Δ/σ3(3ω) = 31/13& 2.38. This 2.38 times enhanced
optical response at the onset frequency of σ3(3ω) is
universal for any value of Δ. This suggests that the 2.38
enhancement is related to the topological changes in the
band structure of the Dirac fermion when a bandgap
created.
At the frequencies close to the energy gap, the onset

linear conductance is twice the universal conductance [96]
σ1c = 2σ0. The onset triple-frequency nonlinear conductiv-
ity σ3(3ω) = σ1c at ÿω = Δ/3 requires an applied field of E =
3600 V/cm. This is a rather weak field for typical

Fig. 14 Frequency dependent optical conductance in the low
frequency regime for two temperatures. The electric field is 3600
V/cm. The absorption edge for the frequency tripled response is
shifted to Δ/3. The inset is a schematic showing different optical
processes [70]
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experimental conditions. On the other hand, the onset
single-frequency nonlinear conductivity σ3(ω) = σ1c at ÿω
= Δ requires an electric field of around three times greater.
Therefore, the potential of using the frequency tripled
nonlinear effect in the frequency below the gap is very
significant. The electric field required for σ3(ω) = σ1c at the
vertical absorption edge can be determined,

Ecðÿω ¼ Δ=3Þ

¼ Δ2

9eÿvF

24

56tanh
Δ

12kBT

� �
– 25tanh

Δ
6kBT

� �
2
664

3
775
1=2

:

(72)

In Fig. 15, we show the frequency dependence of the
critical field at which σ3(3ω)/σ1c = 1. This field measures
the nonlinearity of the system at a given frequency. In the
entire low frequency regime, Δ/3< ÿω<Δ, we found that
the critical field for SHG is smaller than that in pure
graphene by around 10% – 40%. This indicates that SHG is
a strong nonlinear system at low frequencies and low
temperatures. The reason for this is that the density of
states near the band edge has a van Hove-like singularity,
D(ε) &ε1/2. This is qualitatively different from the case of
normal two-dimensional semiconductors. In normal semi-
conductors, the energy dispersion near the band edge is
parabolic and the density of states is constant. Here in SHG
the large density of state near the band edge leads to a
strong nonlinear effect.
In Fig. 16, we show the temperature dependence of the

critical field Ec(3ω) at two different frequencies. At low

temperature Ec(3ω) is nearly constant and is smaller than
that required in pure graphene. At high temperature,
Ec(3ω) in SHG is larger than that required in pure
graphene. As temperature increases, the Van Hove
singularity becomes weaker and the critical field increases.
At high temperature, Ec(3ω) increases with temperature as
Ec(3ω) &T1/2. It should be pointed out that a high critical
field in SHG at room temperature will not remove the key
property of two-color optical response in SHG. In pure
graphene, the response maximum of the linear term and
frequency tripled term is not resolved.
The nonlinear effect reported is more general than that in

SHG. Many effects can lead to a finite gap in the Dirac
point in graphene. For example, the spin-orbit coupling can
result in a gap of the size of Δ& 0.2 meV. This is a very
small gap but will produce qualitatively the same nonlinear
effect as in SHG. Impurity scattering included gap which is
also in the form of Eq. (72). The critical field mentioned
earlier for σ3(3ω) is proportional to Δ2. Therefore, in
general, the smaller the gap, the weaker the critical field at
the onset frequency of the nonlinear response peak. If the
gap can be controlled by external means, then the distance
between the two peaks also becomes tunable. However,
smaller gaps will result in a smaller distance between the
peaks of linear response and frequency tripled response
and the linear and nonlinear response peaks becomes less
resolved.

2.4 Graphene superlattice

We now study the optical response of a Kronig-Penney
type graphene superlattice. In this structure, the band
structure of the massless Dirac fermion is no longer
symetrical in k-space. The effect of anisotropy on the
optical response in THz frequency regime is investigated.

Fig. 15 Frequency dependence of the critical field E(3ω) for
SHG and pure (gapless) graphene [70]. The inset shows the
reduction of the critical field in SHG. Note that there exists a cut-
off frequency fc =ωc/(2π) = Δ/3h& 2.4 THz since σ3(3ω) = 0 at
frequency smaller than fc

Fig. 16 Temperature dependence of the critical field [70] at two
different frequencies of 2.4 and 5 THz
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It is found that the optical absorption, both linear and
nonlinear response, are universally enhanced by the
anisotropy when the external field aligns with the super-
lattice periodicity. Since both linear and nonlinear response
are enhanced by the same amount, the optical nonlinearity
(i.e., the relative magnitude between linear and nonlinear
responses) is unexpectedly preserved regardless how
strong the band structure anisotropy is. The enhanced
optical absorption and the preserved optical nonlinearity
reveal that anisotropy has transformed graphene super-
lattice into a stronger nonlinear material which produces
larger nonlinear optical current than isotropic case under
the same critical electric field strength. Such enhanced
optical absorption and well-preserved optical nonlinearity
also occurs in gapped graphene in which the quasiparticle
is in the form of massive Dirac fermions. The anisotropic
massive Dirac femrion is a bizzare quasiparticle not only
with non-uniform ‘light speed’ but also non-uniform mass
dependent of the propagation direction. The results suggest
that the enhanced electron-single-photon and electron-
multiple-photon couplings is a universal feature of
relativistic Dirac fermions of both massless or massive
types, and the band structure isotropy is not a pre-requisite
for the strong optical nonlinearity in graphene.

2.4.1 Recursion equations of anisotropic massless Dirac
fermion

In a graphene superlattice created by applying a Kronig-
Penney potential [48,49], the K-point electrons no longer
travels with uniform vF in all direction. Instead, the group
velocity in the direction perpendicular to the periodicity of
the Kronig-Penney potential is reduced by a factor of l
dependent on the strength and periodicity of the potential.

The band structure of the superlattice is no longer circular,
but is deformed to an elliptic cone. Such quasiparticle
nature is analog to a massless Dirac fermion traveling in
anisotropic spacetime [48,49,97].
In topological insulator (TI), the quasiparticle residing in

its surface state is also in the massless Dirac form with
Fermi velocity approximately half of the graphene [63].
Interestingly, the anisotropic massless Dirac fermion can
also be found in the (2, 2, 1) side-surface state of Bi2Se3 TI
with a rather strong anisotropy of vx = 3.1� 105 m/s and vy
= 1.4 � 105 m/s [98]. In a Bi square net of SrMnBi2 TI,
highly anisotropic Fermi velocity differs by a factor of 8
was experimentally observed [99].
The anisotropy can be modeled by defining an

anisotropy parameter, l, which modifies the y-direction
group velocity by vy = lvF where vF = 106 m/s is the Fermi
velocity, and the anisotropy parameter is continuously
tunable, 0£l£1, by varying the superlattice periodicity L,
potential width w and potential height U (Fig. 17) [48,49].
The graphene superlattice Hamiltonian is written as
Ĥ ¼ �xpx þ l�ypy, where the l term has created the
desired anisotropy in y-direction. The energy dispersion is

given as εsðp,�Þ ¼ svFp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�þ l2sin2�

p
where s =� 1

denotes electron and hole state. The group velocity in θ-

direction is given as v ¼ vF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�þ l2sin2�

p
, which gives

the expected x- and y-components of vð� ¼ 0Þ ¼ vF ¼ vx
and vð� ¼ π=2Þ ¼ lvF ¼ vy. The eigenfunction is given as

ψ0ðs,pÞ ¼
1ffiffiffi
2

p
�
1,vFðpx þ ilpyÞ=εs

�T
, where T denotes

transpose. The band structure is plotted in Fig. 17. It can
be seen that due to the reduced group velocity in y-
direction, the conic Dirac cone is elongated in y-direction,
forming an anisotropic elliptic Dirac cone. When an
external field E = E0e

iωt is applied along the x-direction, the

Fig. 17 Band structure of graphene superlattice (inset). In the px-py plan, the Dirac cone is elongated elliptically in the y-direction. L, w
and U are the superlattice periodicity, potential width and potential height, respectively, of the Kronig-Penney type graphene superlattice
[71]
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quasiparticle is minimally coupled to the photon according
to px! px – eA, where A = –∂E/∂t. The Hamiltonian is
then given by

Ĥ ¼ vF
0 px – lipy – eA

px þ lipy – eA 0

" #
: (73)

The energy dispersion is given as εsðp,fÞ ¼ svFpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�þ l2sin2�

p
, where s = �1. The single electron

eigenstate is given as

ψ0ðs,pÞ ¼
1ffiffiffi
2

p
1

svF
px þ ilpy

ε

2
64

3
75, (74)

where ε ¼ εsj j. The wave function in the presents of an
external electric field is written as

ψnðpÞ ¼
X
n

an

bn

" #
ei

εs
ÿ – nω

 �

t: (75)

Similarly, the Schrodinger’s equation Hψ ¼ iÿ∂ψ=∂t
can then be solved to obtain a pair of recursive equations
for the spinor components an and bn:

ðε – nÿωÞan ¼ vF~p – bn þ
eEvF
iω

bn – 1, (76)

ðε – nÿωÞbn ¼ vF~pþan þ
eEvF
iω

an – 1, (77)

where ~p� ¼ px � ilpy.

2.4.2 Linear and nonlinear optical responses

The linear optical response is found to be σ1(ω) = (σ0/l)
tanh(ÿω/2), where the spin and valley degeneracies have
been included (a factor of 4). The second order and third
order spinors can be constructed similarly using the
recursion equation, Eq. (76). Following exactly the same
procedures, we found that

�3ðωÞ ¼ 2�0
E2v2Fe

2

ÿ2ω4

1

2π
!df

Rþ
1 –

R –

Rþ

� �
tanh

ÿω
kBT

� �
,

(78)

�3ðωÞ ¼ 2
�0

l

E2v2Fe
2

ÿ2ω4
tanh

ÿω
kBT

� �
: (79)

For the third-order triple-frequency (TF) conductivity,
we obtain

�3ð3ωÞ ¼
�0

l

E2v2Fe
2

ÿ2ω4

13
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tanh
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2kBT

� �
–
2

3
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þ15

16
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3ÿω
2kBT
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In Fig. 18, the nonlinear optical conductivities at
different band anisotropy l is shown. We see that σ1(ω),
σ3(ω) and σ3(3ω) are all universally enhanced by a factor
of 1/l, in comparison with that of the isotropic case [77].
For l = 0.1, which can be achieved by applying spatial
period of L& 20 nm, potential width of w = 10 nm and
potential height of U = 0.3 eV, the total optical absorption
is enhanced by 10 times. In the extremely anisotropic case
of l = 0.01, which can be achieved by L& 25 nm, w =
10 nm and U = 0.3 eV [48], 100 times amplification is
achieved. The 1/l enhanced optical absorption is quite a
surprising result. Intuitively, one might expect a reduced
optical response in the anisotropic case since the y-
component of the group velocity vy = lvF is reduced by a
factor of l and the resulting ‘slower’ charge carrier should
degrade the optical current. This is however not the
complete picture since E is directed along x-direction and
the x-directional optical response is only minimally
affected by the reduced y-directional group velocity vy =
lvF. On the other hand, when l< 1, the py components in a
equi-energy slice actually becomes larger in comparison to
the isotropic Fermi velocity case because of the smaller
slope (or equivalently the reduced vy) in y-direction (see
Fig. 1). The overall larger momentum of the charge carrier
across an equi-energy surface is the underlying reason of
the anisotropy-induced enhancement of the interband
optical absorption in the Kronig-Penney type graphene
superlattice. As the anisotropy increases, i.e., l! 0, the
band structure becomes more y-directionally elongated
across an equienergy surface and this generates the 1/l
dependence.

Fig. 18 Frequency dependence [71] of σ3(3ω) at E = 1000 V/cm
and T = 300 K
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The critical field strength Ec remains the same regardless
the level of anisotropy since both linear and nonlinear
response is enhanced by the same factor of 1/l. Therefore,
just like normal graphene, graphene superlattice is also
an exceptionally strong nonlinear material with Ec&
103 V/cm for up to room temperature at f = 1 THz. The
strong optical nonlinearity observed in normal graphene
and graphene superlattice is a general feature of the
relativistic behavior of the quasiparticle. The band
structure isotropy is not necessarily required to achieve
the strong optical nonlinearity. As long as the quasiparticle
energy dispersion maintains its linear form, the strong
optical nonlinearity is always guaranteed and is well
protected from any band structure anisotropy. The

total integrated optical absorption is given as ΣðlÞ ¼
!�ðω,lÞdω and it can be immediately seen that the total

nonlinear absorption is increased by a factor 1/l for all THz
frequency regime as shown in Fig. 18. Although graphene
superlattice is equally advantageous as normal graphene in
terms of the smallness of Ec, the 1/l increased total
response indicates that the nonlinear optical current output
of graphene superlattice is still larger than that of the
normal graphene at a given electric field strength. This
suggests the improved THz photon detection and THz
frequency up-conversion in graphene superlattice which
are potentially useful in the development of graphene-
based THz optical device. Finally, we briefly discuss the
optical response of gapped graphene with anisotropic band
structure. We found that the linear and nonlinear optical
conductivity is in the same form as Eqs. (66), (70) and (70)
multiplied by a factor of 1/l. The band anisotropy
enhanced subgap triple-frequency conductivity is plotted
in Fig. (19). We conclude that the 1/l enhancement is
universal in both gapped and gapless cases in the presence
of band anisotropy.

3 Discussion

3.1 Terahertz photon mixing effect of gapless and gapped
single layer graphene

In graphene, the nonlinear effect is approximately
inversely proportional to the Fermi-level and grows rapidly
with temperature up to room temperature. The critical
electric field required to generate nonlinear effect compar-
able to linear effect is in a rather moderate value of
104 V/cm even in room temperature. The optical response
of single layer graphene under strong-field condition
exhibits the following interesting behavior: (1) the linear
and second-order nonlinear responses are well protected
from external field due to the unique Dirac fermions
dynamics and the preservation of crystal inversion
symmetry; (2) the third-order nonlinear optical response
is enhanced by three distinct mechanisms: (i) third-order

response is intrinsically proportional to E3; (ii) strong-field
induces Dirac fermion population redistribution creates an
additional contribution to third-order response; and (iii) the
nonequilibrium heating raises the carrier temperature to
Thot>Tlattice and further enhances the nonlinear current.
The strong and temperature-robust nonlinear optical
nonlinearity suggests that graphene can potentially be an
excellent candidate in nonlinear photon-mixing applica-
tions. In gapped graphene, the nonlinear optical response is
strongly influenced by the bandgap value and the
temperature. To maximize the nonlinear optical response
of a gapped graphene-based photon mixer, the bandgap
value and the operating temperature has to be carefully
chosen.

We point out several experiments which can potentially
be used to verify our theoretical calculations. Several
experimental works emphasizing the visible and near-
infrared nonlinear optical response of graphene has been
reported recently [73,100,101]. Multiple-photon absorp-
tion/transmission experiments [100,101] can be repeated in
the THz regime to qualitatively estimate the optical
nonlinearity of graphene. The nonlinear wave-mixing
effect can be more accurately quantified by irradiating an
graphene sample with two THz waves of frequencies ω1

and ω2, and selectively filtering the outgoing waves to
determine the strength of the mixed wave (2ω1�ω2) [73].
The temperature dependence of the wave-mixing effect can
be probed by performing these experiments under
controlled temperature condition.

3.2 Bilayer graphene

We found that BLG is a rather strong nonlinear material.
This nonlinear effect is robust from low to room
temperatures. The frequency tripling nonlinear term is
comparable to the linear term in the THz frequency regime.

Fig. 19 Anisotropic gapped graphene frequency-tripling con-
ductivity [71] at T = 300 K and E = 3400 V/cm and Δ = 0.03 eV
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This suggests that BLG has a potential in a THz emitter/
detector at frequencies, which are traditionally difficult to
obtain by using an existing emitter at one-third the
frequency. We now briefly present on the role of phonon
excitation in BLG. In the temperature range of up to room
temperature, the dominant electron-phonon coupling is via
longitudinal acoustic (LA) phonons since either the
couplings to other graphene lattice phonon modes are too
weak or the energy scales of these optical phonon modes
are far too high [102]. The velocity of the LA phonon is
around 2 � 104 m/s [102]. Under an electric field around
1000 V/cm with a frequency of 1 THz, the energy of the
photoexcited electron is around 1 THz. These electrons are
located very close to the Dirac point, and the electron
velocity is around 0.6 � 106 m/s. In the absence of other
disorders and due to the energy conversation, the
probability of single phonon emission is negligible. The
multiple phonon excitations are possible but the prob-
ability is also very low due to the high order electron-
phonon coupling. Therefore, in the absence of disorders,
we do not expect that phonon excitation will play a
significant role in altering the nonlinear electrical current in
this energy regime. In the presence of impurities, electron-
phonon coupling in single layer graphene can be enhanced
by disorder-assisted supercollision process [103–105].
In conclusion, we have shown that BLG exhibits a

strong nonlinear effect in the THz to FIR regime under an
electric field of around 103 V/cm. In particular, a moderate
field can induce the frequency tripling term at room
temperature. This suggests a potential for developing
graphene-based optics and photonics applications.

3.3 Semihydrogenated graphene

It is found that SHG with a bandgap in its Dirac point
exhibits strong nonlinear optical response at frequency
range of Δ/3<ωÿ<Δ. In this frequency range, the optical
response is solely contributed by three-photon nonlinear
process and hence has a zero critical field. The nonlinear
response peak and the linear response peaks are well-
separated giving rise to a two-color characteristic.
Furthermore, the triple-frequency nonlinear optical
response is universally enhanced by a factor of 31/13 &
2.38, suggesting a topological origin due to the bandgap
opening in the Dirac fermion energy spectrum.

3.4 Graphene superlattice

The anisotropic Dirac fermion in the graphene superlattice
tunes up the total optical conductance while maintaining
the same critical electric field. This also occurs in
anisotropic graphene with a gap. Furthermore, the optical
nonlinearity is perfectly protected from band anisotropy
while the total optical responses, including both linear and
nonlinear processes, are enhanced by a factor of 1/l. Since
l is dependent on the superlattice parameters, a graphene

superlattice can potentially be used as a tunable THz
source/detector. It can be noticed that the fifth order
nonlinear term can potentially play a role in the optical
nonlinearity of a superlattice structure. The nth-order
conductance is proportional to a dimensionless parameter
Z = (eEvF /ÿω2)n–1 and an overlap integral of eigenstates of
different orders <fn –m fmj > . Because the overlap
integral decreases very rapidly with n, the third-order
nonlinear effect persists for Z> 1 while the fifth-order term
is negligible. At frequency around 1 THz, the critical field
(the field at which the third-order current equals the linear
current) is around 2000 V/cm [77]. For vF = 106 m/s, ω = 1
THz, and E = 2000 V/cm, the resulting Z = 50. At this
value of Z, the third-order current equals approximately the
linear current, but the fifth-order current is about 10–5 of the
linear current, totally negligible [106]. Finally, as a weak
sinusoidal term can be added to a graphene via holographic
illumination [107] or by patterning the substrate, possible
experimental verification of the results could be performed
with direct measurement of the optical conductivity of
such a system.

4 Conclusion

In conclusion, we review and discuss the nonlinear optical
response of graphene and its related sister-structures in the
THz and FIR frequency regimes. It is found that not only
single layer graphene exhibits strong optical nonlinearity,
stacking up graphene layers, bandgap opening at the Dirac
points (such as SHG), and the construction of graphene
superlattice via electrostatic gating also render the material
with strong optical nonlinearity. Finally, we propose future
experiments on graphene structures to be performed in
order to verify our theoretical results.
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