Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2018, Vol. 11 Issue (2) : 155-162     https://doi.org/10.1007/s12200-018-0812-2
REVIEW ARTICLE |
Fiber transmission demonstrations in vector mode space division multiplexing
Leslie A. RUSCH(), Sophie LAROCHELLE
Centre for Optics, Photonics and Lasers, ECE Department, Université Laval, Quebec, G1V 0A6, Canada
Download: PDF(276 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Much attention has been focused on the use of scalar modes for space division multiplexing (SDM). Alternative vector mode bases offer another solution set for SDM, expanding the available trade-offs in system performance and complexity. We present two types of ring core fiber conceived and designed to explore SDM with fibers exhibiting low interactions between supported modes. We review demonstrations of fiber data transmission for two separate vector mode bases: one for orbital angular momentum (OAM) modes and one for linearly polarized vector (LPV) modes. The OAM mode demonstrations include short transmissions using commercially available transceivers, as well as kilometer length transmission at extended data rates. The LPV demonstrations span kilometer length transmissions at high data rate with coherent detection, as well as a radio over fiber experiment with direct detection of narrowband signals.

Keywords space division multiplexing (SDM)      few-mode fiber (FMF)      orbital angular momentum (OAM)      linearly polarized vector (LPV) modes      ring core fiber (RCF)      polarization maintaining fiber     
Corresponding Authors: Leslie A. RUSCH   
Just Accepted Date: 24 April 2018   Online First Date: 01 June 2018    Issue Date: 04 July 2018
 Cite this article:   
Leslie A. RUSCH,Sophie LAROCHELLE. Fiber transmission demonstrations in vector mode space division multiplexing[J]. Front. Optoelectron., 2018, 11(2): 155-162.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-018-0812-2
http://journal.hep.com.cn/foe/EN/Y2018/V11/I2/155
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Leslie A. RUSCH
Sophie LAROCHELLE
Fig.1  Geometry of (a) a ring core fiber (RCF) and (b) an elliptical ring core fiber (ERCF)
Fig.2  Refractive index profile of (a) ring core fiber showing the design (red) and the measured profile (blue), and (b) an elliptical ring core fiber showing the measured profile along the two axis of the ellipse
Fig.3  Reflection spectrum of fiber Bragg gratings (FBGs) written in the ring core fiber (RCF, red) and the elliptical ring core fiber (ERCF, blue)
Fig.4  Setup for transmission experiments. In experiments with commercial transceivers, OAM0 uses OOK transceiver with direct detection, while OAM±1 uses QPSK transceiver with coherent detection. In experiments with a real-time oscilloscope, QPSK with coherent detection is used on both OAM0 and OAM±1
Fig.5  Setup for transmission experiments with LPV modes. In wideband experiments, QPSK data is transmitted on all modes and coherent detection is used. In narrowband radio over fiber experiments, only four channels are populated: inputs 5 and 6 are unused and input 2 is modified to generate LPV11a,x rather than LPV21a,x. PBC: polarization beam combiner
1 Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362
https://doi.org/10.1038/nphoton.2013.94
2 Marom D M, Colbourne P D, D’Errico A, Fontaine N K, Ikuma Y, Proietti R, Zong L, Rivas-Moscoso J M, Tomkos I. Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking. Journal of Optical Communications and Networking, 2017, 9(1): 1–26
https://doi.org/10.1364/JOCN.9.000001
3 Fontaine N K, Ryf R, Chen H, Benitez A V, Guan B, Scott R, Ercan B, Yoo S J B, Grüner-Nielsen L E, Sun Y, Lingle R, Antonio-Lopez E, Amezcua-Correa R. 30×30 MIMO transmission over 15 spatial modes. In: Proceedings of Optical Fiber Communication Conference Post Deadline Papers. Los Angeles, California: OSA Publishing, 2015, Th5C.1
4 Huang B, Fontaine N K, Ryf R, Guan B, Leon-Saval S G, Shubochkin R, Sun Y, Lingle R Jr, Li G. All-fiber mode-group-selective photonic lantern using graded-index multimode fibers. Optics Express, 2015, 23(1): 224–234
https://doi.org/10.1364/OE.23.000224 pmid: 25835669
5 Arik S O, Askarov D, Kahn J M. MIMO DSP Complexity in mode-division multiplexing. In: Proceedings of Optical Fiber Communication Conference. Los Angeles, California: OSA Publishing, 2015, Th1D.1
6 Brunet C, Ung B, Wang L, Messaddeq Y, LaRochelle S, Rusch L A. Design of a family of ring-core fibers for OAM transmission studies. Optics Express, 2015, 23(8): 10553–10563
https://doi.org/10.1364/OE.23.010553 pmid: 25969095
7 Ung B, Vaity P, Wang L, Messaddeq Y, Rusch L A, LaRochelle S. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Optics Express, 2014, 22(15): 18044–18055
https://doi.org/10.1364/OE.22.018044 pmid: 25089424
8 Brunet C, Vaity P, Messaddeq Y, LaRochelle S, Rusch L A. Design, fabrication and validation of an OAM fiber supporting 36 states. Optics Express, 2014, 22(21): 26117–26127
https://doi.org/10.1364/OE.22.026117 pmid: 25401644
9 Wang L, Nejad R M, Corsi A, Lin J, Messaddeq Y, Rusch L, LaRochelle S. Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing. Optics Express, 2017, 25(10): 11736–11749
https://doi.org/10.1364/OE.25.011736 pmid: 28788733
10 Antonelli C, Mecozzi A, Shtaif M, Winzer P J. Random coupling between groups of degenerate fiber modes in mode multiplexed transmission. Optics Express, 2013, 21(8): 9484–9490
https://doi.org/10.1364/OE.21.009484 pmid: 23609659
11 Liang J, Mo Q, Fu S, Tang M, Shum P, Liu D. Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission. Optics Letters, 2016, 41(13): 3058–3061
https://doi.org/10.1364/OL.41.003058 pmid: 27367101
12 Wang L, LaRochelle S. Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing. Optics Letters, 2015, 40(24): 5846–5849
https://doi.org/10.1364/OL.40.005846 pmid: 26670527
13 Zhao J, Tang M, Oh K, Feng Z, Zhao C, Liao R, Fu S, Shum P P, Liu D. Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core. Photonics Research, 2017, 5(3): 261–266
https://doi.org/10.1364/PRJ.5.000261
14 Wang L, Vaity P, Ung B, Messaddeq Y, Rusch L A, LaRochelle S. Characterization of OAM fibers using fiber Bragg gratings. Optics Express, 2014, 22(13): 15653–15661
https://doi.org/10.1364/OE.22.015653 pmid: 24977824
15 Nejad M R, Wang L, Lin J, LaRochelle S, Rusch L A. The impact of modal interactions on receiver complexity in OAM fibers. Journal of Lightwave Technology, 2017, 35(21): 4692–4699
https://doi.org/10.1109/JLT.2017.2751248
16 Rusch L A, Rad M M, Allahverdyan K, Fazal I, Bernier E. Carrying data on the orbital angular momentum of light. IEEE Communications Magazine, 2018, 56(2): 219–224
https://doi.org/10.1109/MCOM.2018.1700058
17 Nejad R M, Allahverdyan K, Vaity P, Amiralizadeh S, Brunet C, Messaddeq Y, LaRochelle S, Rusch L A. Mode division multiplexing using orbital angular momentum modes over 1.4 km ring core fiber. Journal of Lightwave Technology, 2016, 34(18): 4252–4258
https://doi.org/10.1109/JLT.2016.2594698
18 Parmigiani F, Jung Y, Gruner-Nielsen L, Geisler T, Petropoulos P, Richardson D J. Elliptical core few mode fibers for multiple-input multiple output-free space division multiplexing transmission. IEEE Photonics Technology Letters, 2017, 29(21): 1764–1767
https://doi.org/10.1109/LPT.2017.2740499
19 Mirzaei Nejad R, Tavakoli F, Wang L, Guan X, LaRochelle S, Rusch L A. Four-channel RoF transmission over polarization maintaining elliptical ring core fiber. In: Proceedings of IEEE/OSA Optical Fiber Communications Conference (OFC 2018). San Diego, California: OSA Publishing, 2018, p.M4J.6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed