Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (2) : 171-175     DOI: 10.1007/s12200-011-0159-4
RESEARCH ARTICLE |
Synthesis of silicon nanowires supported Ag nanoparticles and their catalytic activity in photo-degradation of Rhodamine B
Yueyin SHAO1(), Yongqian WEI1, Zhenghua WANG2
1. Laboratory Material Supply Centre, Soochow University, Suzhou 215123, China; 2. Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
Download: PDF(362 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Silver modified silicon nanowires were obtained and employed as photo-catalysts in the degradation of Rhodamine B (RhB), which demonstrated the excellent catalytic activity. These catalysts may be recycled and reused.

Keywords silicon nanowires      Ag nanoparticles      Rhodamine B (RhB)     
Corresponding Authors: SHAO Yueyin,Email:yyshao@suda.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Yueyin SHAO,Yongqian WEI,Zhenghua WANG. Synthesis of silicon nanowires supported Ag nanoparticles and their catalytic activity in photo-degradation of Rhodamine B[J]. Front Optoelec Chin, 2011, 4(2): 171-175.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-011-0159-4
http://journal.hep.com.cn/foe/EN/Y2011/V4/I2/171
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yueyin SHAO
Yongqian WEI
Zhenghua WANG
Fig.1  XRD patterns of (a) SiNWs and (b) Ag/Si nanostructure
Fig.1  XRD patterns of (a) SiNWs and (b) Ag/Si nanostructure
Fig.2  SEM image of SiNWs
Fig.2  SEM image of SiNWs
Fig.3  (a) TEM image of single SiNW supported with Ag nanoparticles; (b) EDX of SiNW revealing its chemical composition of Si and Ag; (c) HRTEM image showing both (111) crystal planes of Si and Ag; (d) SAED pattern indicating bright diffraction spots of Si and weak diffraction ring of Ag nanoparticles
Fig.3  (a) TEM image of single SiNW supported with Ag nanoparticles; (b) EDX of SiNW revealing its chemical composition of Si and Ag; (c) HRTEM image showing both (111) crystal planes of Si and Ag; (d) SAED pattern indicating bright diffraction spots of Si and weak diffraction ring of Ag nanoparticles
Fig.4  (a) UV-vis spectra of degradation of RhB using Ag/Si catalysts at room temperature; (b) curve of ln() concentration versus time using Ag/Si catalysts
Fig.4  (a) UV-vis spectra of degradation of RhB using Ag/Si catalysts at room temperature; (b) curve of ln() concentration versus time using Ag/Si catalysts
Fig.5  UV-vis spectra of degradation of RhB using nano-Ag catalysts at room temperature
Fig.5  UV-vis spectra of degradation of RhB using nano-Ag catalysts at room temperature
Fig.6  (a) Recycling experiments of Ag/Si catalysts in degradation of RhB; (b) curve of reaction constant versus cycle times
Fig.6  (a) Recycling experiments of Ag/Si catalysts in degradation of RhB; (b) curve of reaction constant versus cycle times
1 Rondinini S, Vertova A. Electrocatalysis on silver and silver alloys for dichloromethane and trichloromethane dehalogenation. Electrochimica Acta, 2004, 49(22-23): 4035–4046
doi: 10.1016/j.electacta.2003.12.061
2 Adhyapak P V, Karandikar P, Vijayamohanan K, Athawale A A, Chandwadkar A J. Synthesis of silver nanowires inside mesoporous MCM-41 host. Materials Letters, 2004, 58(7-8): 1168–1171
doi: 10.1016/j.matlet.2003.09.008
3 Carotenuto G, Pepe G P, Nicolais L. Preparation and characterization of nano-sized Ag/PVP composites for optical applications. European Physical Journal B, 2000, 16(1): 11–17
doi: 10.1007/s100510070243
4 Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Analytical Chemistry, 2003, 75(21): 5936–5943
doi: 10.1021/ac034356f
5 García-Vidal F J, Pendry J B. Collective theory for surface enhanced Raman scattering. Physical Review Letters, 1996, 77(6): 1163–1166
doi: 10.1103/PhysRevLett.77.1163
6 Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials, 2001, 13(18): 1389–1393
doi: 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F
7 Jana N R, Gearheart L, Murphy C J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chemistry of Materials, 2001, 13(7): 2313–2322
doi: 10.1021/cm000662n
8 Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials, 2002, 14(1): 80–82
doi: 10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#
9 Jin R C, Cao Y C, Hao E C, Métraux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425(6957): 487–490
doi: 10.1038/nature02020
10 Maillard M, Huang P R, Brus L. Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed. Nano Letters, 2003, 3(11): 1611–1615
doi: 10.1021/nl034666d
11 Hua F, Cui T H, Lvov Y. Lithographic approach to pattern self-assembled nanoparticle multilayers. Langmuir, 2002, 18(17): 6712–6715
doi: 10.1021/la025856r
12 Haynes C L, Van Duyne R P. Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography. Nano Letters, 2003, 3(7): 939–943
doi: 10.1021/nl0342287
13 Porter L A, Choi H C, Ribbe A E, Buriak J M. Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces. Nano Letters, 2002, 2(10): 1067–1071
doi: 10.1021/nl025677u
14 Keir R, Igata E, Arundell M, Smith W E, Graham D, McHugh C, Cooper J M. SERRS. In situ substrate formation and improved detection using microfluidics. Analytical Chemistry, 2002, 74(7): 1503–1508
doi: 10.1021/ac015625+
15 Zhu G S, Wang C, Zhang Y H, Guo N, Zhao Y Y, Wang R W, Qiu S L, Wei Y, Baughman R H. Highly effective sulfated zirconia nanocatalysts grown out of colloidal silica at high temperature. Chemistry, 2004, 10(19): 4750–4754
doi: 10.1002/chem.200400288
16 Liu Z Q, Zhou W Y, Sun L F, Tang D S, Zou X P, Li Y B, Wang C Y, Wang G, Xie S S. Growth of amorphous silicon nanowires. Chemical Physics Letters, 2001, 341(5-6): 523–528
doi: 10.1016/S0009-2614(01)00513-9
17 Kamins T I, Williams R S, Chen Y, Chang Y L, Chang Y A. Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si. Applied Physics Letters, 2000, 76(5): 562–564
doi: 10.1063/1.125852
18 Shao M W, Hu H, Li M, Ban H Z, Wang M Y, Jiang J. Karman vortex street assisted patterning in the growth of silicon nanowires. Chemical Communications, 2007, (8): 793–794
doi: 10.1039/b613473d
19 Li C P, Sun X H, Wong N B, Lee C S, Lee S T, Teo B K. Silicon nanowires wrapped with Au film. Journal of Physical Chemistry B, 2002, 106(28): 6980–6984
doi: 10.1021/jp014085h
20 Cui Y, Wei Q Q, Park H K, Lieber C M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533): 1289–1292
doi: 10.1126/science.1062711
21 Ren X, Meng X W, Chen D, Tang F Q, Jiao J. Using silver nanoparticle to enhance current response of biosensor. Biosensors & Bioelectronics, 2005, 21(3): 433–437
doi: 10.1016/j.bios.2004.08.052
Related articles from Frontiers Journals
[1] Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure[J]. Front Optoelec Chin, 2011, 4(4): 378-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed