Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (1) : 12-23     DOI: 10.1007/s12200-011-0206-1
REVIEW ARTICLE |
Conjugated dendritic oligothiophenes for solution-processed bulk heterojunction solar cells
Chang-Qi MA()
Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
Download: PDF(780 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This mini-review summarizes the recent achievements of developing conjugated dendritic oligothiophenes (DOT) for use in solution-processed bulk heterojunction (BHJ) solar cells. These DOTs are structurally defined molecules with relatively high molecular weight. Therefore, this novel class of thiophene based material possesses not only some advantages of oligomers, such as defined and monodispersed molecular structure, high chemical purity, but also some characteristics of polymers, for example, good solution-processability. In addition, the step-by-step approach of its synthesis allows precise functionalization of dendritic backbones with desired moieties, which is helpful to finely tune the optical and electronic properties of materials. Power conversion efficiencies (PCE) of BHJ solar cells were achieved up to 2.5% when functionalized thiophene dendrimers were used as electron donor and electron acceptor was a fullerene derivative. These results indicated that dendritic oligothiophenes are a novel class of the materials of electron donor for solution-processed organic solar cells.

Keywords conjugated dendrimers      dendritic oligothiophenes (DOT)      organic semiconductors      bulk heterojunction (BHJ) solar cells     
Corresponding Authors: MA Chang-Qi,Email:changqi.ma@uni-ulm.de   
Issue Date: 05 March 2011
 Cite this article:   
Chang-Qi MA. Conjugated dendritic oligothiophenes for solution-processed bulk heterojunction solar cells[J]. Front Optoelec Chin, 2011, 4(1): 12-23.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-011-0206-1
http://journal.hep.com.cn/foe/EN/Y2011/V4/I1/12
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chang-Qi MA
Fig.1  Examples of thiophene based polymers and oligomers for use in solution-processed bulk heterojunction solar cells
Fig.1  Examples of thiophene based polymers and oligomers for use in solution-processed bulk heterojunction solar cells
Fig.2  Chemical structure of Advincula-type all-thiophene dendrons and dendrimers
Fig.2  Chemical structure of Advincula-type all-thiophene dendrons and dendrimers
Fig.3  Chemical structure of generation all-thiophene dendrons and dendrimers
Fig.3  Chemical structure of generation all-thiophene dendrons and dendrimers
Fig.4  EQE spectrum comparison of P3HT:PCBM (1∶1, /), 42T∶PCBM (1∶2, /), and 90T∶PCBM (1∶2, /) based devices
Fig.4  EQE spectrum comparison of P3HT:PCBM (1∶1, /), 42T∶PCBM (1∶2, /), and 90T∶PCBM (1∶2, /) based devices
Fig.5  (a) Weight-averaged absorption coefficient of T dendrons and solar flux (AM1.5G); (b) correlation between and number of absorbed solar photons (s·g) for DOTs. (Reproduced with permission from Ref. [], Copyright 2008 Wiley-VCH)
Fig.5  (a) Weight-averaged absorption coefficient of T dendrons and solar flux (AM1.5G); (b) correlation between and number of absorbed solar photons (s·g) for DOTs. (Reproduced with permission from Ref. [], Copyright 2008 Wiley-VCH)
Fig.6  Correlation between short-circuit current density and ratio of DOT:PCBM as well as number of thiophene units per PCBM molecule (reproduced with permission from Ref. [], Copyright 2008 Wiley-VCH)
Fig.6  Correlation between short-circuit current density and ratio of DOT:PCBM as well as number of thiophene units per PCBM molecule (reproduced with permission from Ref. [], Copyright 2008 Wiley-VCH)
DOTlabsmax/nma)Eg/eVa)VOC/Vb)JSC/(mA·cm-2)b)FFb)/%PCE/%b)mh/(cm·V-1·S-1)c)
18T-Si3922.350.942.390.350.791.5 × 10-6
21T3832.430.992.640.370.961.5 × 10-5
42T-Si3952.290.942.960.371.033.6 × 10-6
42T3.932.280.983.920.431.651.2 × 10-5
0.97d)4.19d)0.42d)1.72d)
90T3.87e)2.24e)0.94d)4.40d)0.40d)1.65d)-
Tab.1  Optical and physical data as well as device performance of selected thiophene dendrimers
Fig.7  Chemical structures of benzene ring cored-thiophene dendrimers
Fig.7  Chemical structures of benzene ring cored-thiophene dendrimers
Fig.8  (a) Absorption comparison between pFHBC-9T, 9T, and 18T; (b) chemical structure of pFHBC-9T
Fig.8  (a) Absorption comparison between pFHBC-9T, 9T, and 18T; (b) chemical structure of pFHBC-9T
Fig.9  - curve (a) and EQE spectra (b) of pFHBC-9T:PCBM based devices
Fig.9  - curve (a) and EQE spectra (b) of pFHBC-9T:PCBM based devices
Fig.10  Chemical structure of pyrazino[2,3-g]quinoxaline (PQ)-cored thiophene dendrimers
Fig.10  Chemical structure of pyrazino[2,3-g]quinoxaline (PQ)-cored thiophene dendrimers
Fig.11  Absorption spectra (a) and electronic energy levels of PQ-cored thiophene dendrimers (b) (reproduced with permission from Ref. [], Copyright 2009 American Chemical Society)
Fig.11  Absorption spectra (a) and electronic energy levels of PQ-cored thiophene dendrimers (b) (reproduced with permission from Ref. [], Copyright 2009 American Chemical Society)
Fig.12  Functionalization of perylenebisimide (PDI) and phthalocyanine (Pc) dyes with thiophene dendrons via non-covalent bonds
Fig.12  Functionalization of perylenebisimide (PDI) and phthalocyanine (Pc) dyes with thiophene dendrons via non-covalent bonds
Fig.13  (a) UV-vis absorption of PDI-DOT (reproduced with permission from Ref. [], Copyright 2009 Royal Society of Chemistry); (b) Pc-DOT hybrids (reproduced with permission from Ref. [], Copyright 2009 American Chemistry Society)
Fig.13  (a) UV-vis absorption of PDI-DOT (reproduced with permission from Ref. [], Copyright 2009 Royal Society of Chemistry); (b) Pc-DOT hybrids (reproduced with permission from Ref. [], Copyright 2009 American Chemistry Society)
1 Thompson B C, Fréchet J M J. Polymer-fullerene composite solar cells. Angewandte Chemie International Edition , 2008, 47(1): 58–77
doi: 10.1002/anie.200702506 pmid:18041798
2 Brabec C J, Zerza G, Cerullo G, Silvestri S D, Luzzati S, Hummelen J C, Sariciftci S. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chemical Physics Letters , 2001, 340(3-4): 232–236
doi: 10.1016/S0009-2614(01)00431-6
3 van Hal P A, Meskers S C J, Janssen R A J. Photoinduced energy and electron transfer in oligo(p-phenylene vinylene)-fullerene dyads. Applied Physics. A, Materials Science & Processing , 2004, 79(1): 41–46
doi: 10.1007/s00339-003-2500-2
4 Beaupré S, Boudreault P L T, Leclerc M. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives. Advanced Materials (Deerfield Beach, Fla.) , 2010, 22(8): E6–E27
doi: 10.1002/adma.200903484 pmid:20217800
5 Moulé A J, Meerholz K. Morphology control in solution-processed bulk-heterojunction solar cell mixtures. Advanced Functional Materials , 2009, 19(19): 3028–3036
doi: 10.1002/adfm.200900775
6 Dennler G, Scharber M C, Brabec C J. Polymer-fullerene bulk-heterojunction solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2009, 21(13): 1323–1338
doi: 10.1002/adma.200801283
7 Irwin M D, Bruce Buchholz D, Hains A W, Chang R P H, Marks T J. P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(8): 2783–2787
doi: 10.1073/pnas.0711990105
8 Boudreault P L T, Najari A, Leclerc M. Processable low-bandgap polymers for photovoltaic applications. Chemistry of Materials , 2011, 23(3): 456–469
9 Liang Y, Xu Z, Xia J, Tsai S T, Wu Y, Li G, Ray C, Yu L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Advanced Materials (Deerfield Beach, Fla.) , 2010, 22(20): E135–E138
doi: 10.1002/adma.200903528 pmid:20641094
10 Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics , 2009, 3(5): 297–302
doi: 10.1038/nphoton.2009.69
11 Chen H Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics , 2009, 3(11): 649–653
doi: 10.1038/nphoton.2009.192
12 Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials , 2007, 6(7): 497–500
doi: 10.1038/nmat1928 pmid:17529968
13 Wienk M M, Turbiez M, Gilot J, Janssen R A J. Narrow-bandgap diketo-pyrrolo-pyrrole polymer solar cells: the effect of processing on the performanc. Advanced Materials (Deerfield Beach, Fla.) , 2008, 20(13): 2556–2560
doi: 10.1002/adma.200800456
14 Würthner F, Meerholz K. Systems chemistry approach in organic photovoltaics. Chemistry (Weinheim an der Bergstrasse, Germany) , 2010, 16(31): 9366–9373
doi: 10.1002/chem.201001153 pmid:20645353
15 Silvestri F, Marrocchi A, Seri M, Kim C, Marks T J, Facchetti A, Taticchi A. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. Journal of the American Chemical Society , 2010, 132(25): 6108–6117 20377189
doi: 10.1021/ja910420t
16 Sharma G D, Suresh P, Mikroyannidis J A, Stylianakis M M. Efficient bulk heterojunction devices based on phenylenevinylene small molecule and perylene–pyrene bisimide. Journal of Materials Chemistry , 2010, 20(3): 561–567
doi: 10.1039/b918527e
17 Velusamy M, Huang J H, Hsu Y C, Chou H H, Ho K C, Wu P L, Chang W H, Lin J T, Chu C W. Dibenzo[f,h]thieno[3,4-b] quinoxaline-based small molecules for efficient bulk-heterojunction solar cells. Organic Letters , 2009, 11(21): 4898–4901
doi: 10.1021/ol9019953 pmid:19780591
18 Shang H, Fan H, Shi Q, Li S, Li Y, Zhan X. Solution processable D-A-D molecules based on triphenylamine for efficient organic solar cells. Solar Energy Materials and Solar Cells , 2010, 94(3): 457–464
doi: 10.1016/j.solmat.2009.11.005
19 Zhang W, Tse S C, Lu J, Tao Y, Wong M S. Solution processable donor–acceptor oligothiophenes for bulk-heterojunction solar cells. Journal of Materials Chemistry , 2010, 20(11): 2182–2189
doi: 10.1039/b926203b
20 Matsuo Y, Sato Y, Niinomi T, Soga I, Tanaka H, Nakamura E. Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene. Journal of the American Chemical Society , 2009, 131(44): 16048–16050
doi: 10.1021/ja9048702 pmid:19886695
21 Bu L, Guo X, Yu B, Qu Y, Xie Z, Yan D, Geng Y, Wang F. Metal-molecule-metal junctions via pfpe assisted nanotransfer printing (ntp) onto self-assembled monolayers. Journal of the American Chemical Society , 2009, 131(37): 13242–13243 19754184
doi: 10.1021/ja905980w
22 Tantiwiwat M, Tamayo A, Luu N, Dang X D, Nguyen T Q. Oligothiophene derivatives functionalized with a diketopyrrolopyrrolo core for solution-processed field effect transistors: effect of alkyl substituents and thermal annealing. Journal of Physical Chemistry C , 2008, 112(44): 17402–17407
doi: 10.1021/jp8068305
23 Walker B, Tamayo A B, Dang X D, Zalar P, Seo J H, Garcia A, Tantiwiwat M, Nguyen T Q. Flexible organic solar cells: nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Advanced Functional Materials , 2009, 19(19): 3063–3069
doi: 10.1002/adfm.200900832
24 Grayson S M, Fréchet J M J. Convergent dendrons and dendrimers: from synthesis to applications. Chemical Reviews , 2001, 101(12): 3819–3868
doi: 10.1021/cr990116h pmid:11740922
25 Lo S C, Burn P L. Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells. Chemical Reviews , 2007, 107(4): 1097–1116
doi: 10.1021/cr050136l pmid:17385927
26 Kanibolotsky A L, Perepichka I F, Skabara P J. Review of star-shaped molecules, including truxenes. Chemical Society Reviews , 2010, 39(7): 2695–2728 20520881
doi: 10.1039/b918154g
27 Xia C, Fan X, Locklin J, Advincula R C. A first synthesis of thiophene dendrimers. Organic Letters , 2002, 4(12): 2067–2070
doi: 10.1021/ol025943a pmid:12049519
28 Xia C, Fan X, Locklin J, Advincula R C, Gies A, Nonidez W. Characterization, supramolecular assembly, and nanostructures of thiophene dendrimers. Journal of the American Chemical Society , 2004, 126(28): 8735–8743
doi: 10.1021/ja0484404 pmid:15250726
29 Ma C Q, Mena-Osteritz E, Debaerdemaeker T, Wienk M M, Janssen R A J, B?uerle P. Functionalized 3D oligothiophene dendrons and dendrimers-novel macromolecules for organic electronics. Angewandte Chemie International Edition , 2007, 46(10): 1679–1683
doi: 10.1002/anie.200602653
30 Mishra A, Ma C Q, Janssen R A J, B?uerle P. Shape-persistent oligothienylene-ethynylene-based dendrimers: synthesis, spectroscopy and electrochemical characterization. Chemistry (Weinheim an der Bergstrasse, Germany) , 2009, 15(48): 13521–13534
pmid:19876965
31 Roncali J, Leriche P, Cravino A. From one- to three-dimensional organic semiconductors: in search of the organic silicon? Advanced Materials (Deerfield Beach, Fla.) , 2007, 19(16): 2045–2060
doi: 10.1002/adma.200700135
32 Mishra A, Ma C Q, B?uerle P. Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chemical Reviews , 2009, 109(3): 1141–1276
doi: 10.1021/cr8004229 pmid:19209939
33 Ma C Q, Fonrodona M, Schikora M C, Wienk M M, Janssen R A J, B?uerle P. Solution-Processed Bulk-heterojunction solar cells based on monodisperse dendritic oligothiophenes. Advanced Functional Materials , 2008, 18(20): 3323–3331
doi: 10.1002/adfm.200800584
34 Mozer A J, Ma C Q, Wong W W H, Jones D, B?uerle P, Wallace G G. The effect of molecule size and shape on free charge generation, transport and recombination in all-thiophene dendrimer:fullerene bulk heterojunctions. Organic Electronics , 2010, 11(4): 573–582
doi: 10.1016/j.orgel.2009.12.016
35 Ju?ka G, Arlauskas K, Vili?nas M, Ko?ka J. Extraction current transients: new method of study of charge transport in microcrystalline silicon. Physical Review Letters , 2000, 84(21): 4946–4949
doi: 10.1103/PhysRevLett.84.4946 pmid:10990838
36 Mozer A J, Sariciftci N S, Lutsen L, Vanderzande D, ?sterbacka R, Westerling M, Juska G. Charge transport and recombination in bulk heterojunction solar cells studied by the photo induced charge extraction by linearly increasing voltage technique. Applied Physics Letters , 2005, 86(11): 112104
doi: 10.1063/1.1882753
37 Schafferhans J, Baumann A, Deibel C, Dyakonov V. Trap distribution and the impact of oxygen-induced traps on the charge transport in poly(3-hexylthiophene). Applied Physics Letters , 2008, 93(9): 093303
doi: 10.1063/1.2978237
38 Mitchell W J, Kopidakis N, Rumbles G, Ginley D S, Shaheen S E. The synthesis and properties of solution processable phenyl cored thiophene dendrimers. Journal of Materials Chemistry , 2005, 15(42): 4518–4528
doi: 10.1039/b508683c
39 Mitchell W J, Ferguson A J, Kose M E, Rupert B L, Ginley D S, Rumbles G, Shaheen S E, Kopidakis N. Structure-dependent photophysics of first-generation phenyl-cored thiophene dendrimers. Chemistry of Materials , 2009, 21(2): 287–297
doi: 10.1021/cm802410d
40 Kopidakis N, Mitchell W J, van de Lagemaat J, Ginley D S, Rumbles G, Shaheen S E, Rance W L. Bulk heterojunction organic photovoltaic devices based on phenyl-cored thiophene dendrimers. Applied Physics Letters , 2006, 89(10): 103524
doi: 10.1063/1.2337859
41 K?se M E, Mitchell W J, Kopidakis N, Chang C H, Shaheen S E, Kim K, Rumbles G. Theoretical studies on conjugated phenyl-cored thiophene dendrimers for photovoltaic applications. Journal of the American Chemical Society , 2007, 129(46): 14257–14270
doi: 10.1021/ja073455y pmid:17963381
42 Rupert B L, Mitchell W J, Ferguson A J, Kose M E, Rance W L, Rumbles G, Ginley D S, Shaheen S E, Kopidakis N. Low-bandgap thiophene dendrimers for improved light harvesting. Journal of Materials Chemistry , 2009, 19(30): 5311–5324
doi: 10.1039/b903427g
43 Wong W W H, Ma C Q, Pisula W, Feng X, Jones D J, Müllen K, Janssen R A J, B?uerle P, Holmes A B. Self-assembling thiophene dendrimers with a hexa-peri-hexabenzocoronene core-synthesis, characterization and performance in bulk heterojunction solar cells. Chemistry of Materials , 2010, 22(2): 457–466
doi: 10.1021/cm903272y
44 Wu J, Pisula W, Müllen K. Graphenes as potential material for electronics. Chemical Reviews , 2007, 107(3): 718–747
doi: 10.1021/cr068010r pmid:17291049
45 Kastler M, Pisula W, Wasserfallen D, Pakula T, Müllen K. Influence of alkyl substituents on the solution- and surface-organization of hexa-peri-hexabenzocoronenes. Journal of the American Chemical Society , 2005, 127(12): 4286–4296
doi: 10.1021/ja0430696 pmid:15783210
46 Pisula W, Menon A, Stepputat M, Lieberwirth I, Kolb U, Tracz A, Sirringhaus H, Pakula T, Müllen K. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene. Advanced Materials (Deerfield Beach, Fla.) , 2005, 17(6): 684–689
doi: 10.1002/adma.200401171
47 Mastalerz M, Fischer V, Ma C Q, Janssen R A J, B?uerle P. Conjugated oligothienyl dendrimers based on a pyrazino[2,3-g]quinoxaline core. Organic Letters , 2009, 11(20): 4500–4503
doi: 10.1021/ol9015546 pmid:19764714
48 Zhang F, Bijleveld J, Perzon J E, Tvingstedt K, Barrau S, Ingan?s O, Andersson M R. High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives. Journal of Materials Chemistry , 2008, 18(45): 5468–5474
doi: 10.1039/b811957k
49 Zoombelt A P, Fonrodona M, Turbiez G R M, Wienk M M, Janssen R A J. Synthesis and photovoltaic performance of a series of small band gap polymers. Journal of Materials Chemistry , 2009, 19(30): 5336–5339
doi: 10.1039/b821979f
50 Cheng K F, Lai M H, Wang C F, Wu W C, Chen W C. New fluorene–pyrazino[2,3-g]quinoxaline-conjugated copolymers: Synthesis, optoelectronic properties, and electroluminescence characteristics. Journal of Applied Polymer Science , 2009, 112(4): 2094–2101
doi: 10.1002/app.29596
51 Mishra A, Fischer M K R, B?uerle P. Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angewandte Chemie International Edition , 2009, 48(14): 2474–2499
doi: 10.1002/anie.200804709 pmid:19294671
52 Bagnis D, Beverina L, Huang H, Silvestri F, Yao Y, Yan H, Pagani G A, Marks T J, Facchetti A. Marked alkyl- vs alkenyl-substitutent effects on squaraine dye solid-state structure, carrier mobility, and bulk-heterojunction solar cell efficiency. Journal of the American Chemical Society , 2010, 132(12): 4074–4075
doi: 10.1021/ja100520q pmid:20205468
53 Fischer M K R, Kaiser T E, Würthner F, B?uerle P. Dendritic oligothiophene-perylene bisimide hybrids: synthesis, optical and electrochemical properties. Journal of Materials Chemistry , 2009, 19(8): 1129–1136
doi: 10.1039/b817158k
54 Fischer M K R, López-Duarte I, Wienk M M, Martínez-Díaz M V, Janssen R A J, B?uerle P, Torres T. Functionalized dendritic oligothiophenes: ruthenium phthalocyanine complexes and their application in bulk heterojunction solar cells. Journal of the American Chemical Society , 2009, 131(24): 8669–8676
doi: 10.1021/ja901537d pmid:19530734
55 Fischer M K R, Ma C Q, Janssen R A J, Debaerdemaeker T, B?uerle P. Core-functionalized dendritic oligothiophenes—novel donor–acceptor systems. Journal of Materials Chemistry , 2009, 19(27): 4784–4790
doi: 10.1039/b904243a
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed