Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2017, Vol. 10 Issue (3) : 317-322     DOI: 10.1007/s12200-017-0725-5
RESEARCH ARTICLE |
Dynamic influence of pentoxifylline on the oxygen status of Pliss’s lymph sarcoma in rat
Tatiana I. KALGANOVA1(), Anna G. ORLOVA2, German Yu. GOLUBYATNIKOV2, Anna V. MASLENNIKOVA3,4, Ilya V. TURCHIN2
1. Institute of Biomedical Technologies Nizhny Novgorod State Medical Academy, 603950, Nizhny Novgorod, Russia
2. Institute of Applied Physics Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia
3. Federal Research Center «Crystallography and photonics» Russian Academy of Sciences, 119333, Moscow, Russia
4. Radiation Diagnostics and Therapy Department Nizhny Novgorod State Academy, 603950, Nizhny Novgorod, Russia
Download: PDF(294 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tumor oxygenation is one of the key factors influencing disease prognosis and the effectiveness of treatment. Assessment of tumor oxygenation levels facilitates the selection of optimum conditions for radiation therapy, and plays an important role in creating alternative regimes of irradiation. Treating tumors with agents capable of increasing tumor oxygenation in order to increase radiosensitivity is a promising avenue of enquiry. Diffuse optical spectroscopy (DOS) allows a noninvasive determination of tissue oxygen levels based on information about the local changes in optical parameters, and the visualization of metabolic processes in the region of interest. DOS allows reconstruction of the two-dimensional distribution of main tissue chromophores that characterize the processes of oxygen supply (oxygenated hemoglobin) and oxygen consumption (deoxygenated hemoglobin), as well as the blood oxygen saturation levels, which indirectly reflect the tissue oxygenation levels. In the present study, a hemorheologic drug, pentoxifylline, which can improve microcirculation in regions with circulatory disturbances, was used for modifying tumor tissue oxygenation. Pliss’s lymph sarcoma (PLS), which is characterized by rapid growth and early occurrence of necrotic areas, was chosen as a tumor model. Tumor oxygenation was monitored by DOS with parallel plane geometry. Pentoxifylline could improve tumor oxygenation by increasing the concentration of oxyhemoglobin. The increased blood oxygen saturation persisted from 30 to 120 min after drug administration. Normal healthy tissue (muscle) and tumor tissue responded differently to the drug. DOS can be used for testing new agents that influence tissue oxygen status and blood-filling rate.

Keywords tumor oxygenation      diffuse optical spectroscopy (DOS)      pentoxifylline      Pliss’s lymph sarcoma (PLS)     
Corresponding Authors: Tatiana I. KALGANOVA   
Just Accepted Date: 18 July 2017   Online First Date: 29 August 2017    Issue Date: 26 September 2017
 Cite this article:   
Tatiana I. KALGANOVA,Anna G. ORLOVA,German Yu. GOLUBYATNIKOV, et al. Dynamic influence of pentoxifylline on the oxygen status of Pliss’s lymph sarcoma in rat[J]. Front. Optoelectron., 2017, 10(3): 317-322.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-017-0725-5
http://journal.hep.com.cn/foe/EN/Y2017/V10/I3/317
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tatiana I. KALGANOVA
Anna G. ORLOVA
German Yu. GOLUBYATNIKOV
Anna V. MASLENNIKOVA
Ilya V. TURCHIN
Fig.1  Schematic (block diagram) of experimental DOS-setup
Fig.2  Values for (а) StO2, (b) HHb, (c) HbO2 and (d) tHb, determined by DOS in tumor and muscle tissue after Pentoxifylline administration. * - statistically significant differences compared with muscle tissue; # - statistically significant differences compared with initial values
Fig.3  Representative DOS images of PLS before and 30, 120, 240 min after pentoxifylline (Ptx) administration. The solid lines contour the animal body within the scanning region and the dotted lines designate the tumor and contralateral normal area used for analysis. The image size is 80 mm´ 50 mm
1 Busk M, Horsman M R. Relevance of hypoxia in radiation oncology: pathophysiology, tumor biology and implications for treatment. The Quarterly Journal of Nuclear Medicine and Molecular Imaging: Official Publication of the Italian Association of Nuclear Medicine (AIMN) and the International Association of Radiopharmacology (IAR), and Section of the Society of Radiopharmaceutical Sciences, 2013, 57(3): 219–234
2 JoinerM C, van der KogelA. Basic Clinical Radiobiology.4th ed. Abingdon, Oxon: CRC Press, 2009
3 Howard-Flanders P, Moore D. The time interval after pulsed irradiation within which injury to bacteria can be modified by dissolved oxygen I. A search for an effect of oxygen 0.02 second after pulsed irradiation. Radiation Research, 1958, 9(4): 422–437
doi: 10.2307/3570768 pmid: 13591515
4 Michael B D, Adams G E, Hewitt H B, Jones W B, Watts M E. A posteffect of oxygen in irradiated bacteria: a submillisecond fast mixing study. Radiation Research, 1973, 54(2): 239–251
doi: 10.2307/3573702 pmid: 4574206
5
6 Bennewith K L, Durand R E. Drug-induced alterations in tumour perfusion yield increases in tumour cell radiosensitivity. British Journal of Cancer, 2001, 85(10): 1577–1584
doi: 10.1054/bjoc.2001.2123 pmid: 11720448
19 Moulder J E, Robbins M E C, Cohen E P, Hopewell J W, William F. Ward W F. Pharmacologic modification of radiation-induced late normal tissue injury. In: Mittal B B, Purdy J A, Ang K K, eds. Advances in Radiation Therapy. Berlin: Springer Science & Business Media, 2012, 129–151
7 Honess D J, Andrews M S, Ward R, Bleehen N M. Pentoxifylline increases Rif-1 tumour pO2 in a manner compatible with its ability to increase relative tumour perfusion. Acta Oncologica (Stockholm, Sweden), 1995, 34(3): 385–389 
doi: 10.3109/02841869509093994 pmid: 7779427
8 Kaanders J H, Bussink J, van der Kogel A J. ARCON: a novel biology-based approach in radiotherapy. The Lancet Oncology, 2002, 3(12): 728–737
doi: 10.1016/S1470-2045(02)00929-4 pmid: 12473514
9 Pliss G B. Oncological specification of a new strain of rat lymphosarcoma. Bulletin of Experimental Biology and Medicine, 1961, 2: 95–99. 
10 Orlova A G, Turchin I V, Plehanov V I, Shakhova N M, Fiks I I, Kleshnin M I, Konuchenko N Yu, Kamensky V A. Frequency-domain diffuse optical tomography with single source-detector pair for breast cancer detection. Laser Physics Letters, 2008, 5(4): 321–327
doi: 10.1002/lapl.200710131
11 Maslennikova A V, Orlova A G, Golubiatnikov G Yu, Kamensky V A, Shakhova N M, Babaev A A, Snopova L B, Ivanova I P, Plekhanov V I, Prianikova T I, Turchin I V. Comparative study of tumor hypoxia by diffuse optical spectroscopy and immunohistochemistry in two tumor models. Journal of Biophotonics, 2010, 3(12): 743–751
doi: 10.1002/jbio.201000060 pmid: 20715133
12 De Blasi R A, Cope M, Elwell C, Safoue F, Ferrari M. Noninvasive measurement of human forearm oxygen consumption by near infrared spectroscopy. European Journal of Applied Physiology and Occupational Physiology, 1993, 67(1): 20–25
doi: 10.1007/BF00377698 pmid: 8375359
13 Lu H, Golay X, Pekar J J, Van Zijl P C M. Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery. Journal of Cerebral Blood Flow and Metabolism, 2004, 24(7): 764–770
doi: 10.1097/01.WCB.0000124322.60992.5C pmid: 15241184
14 Zywietz F, Böhm L, Sagowski C, Kehrl W. Pentoxifyllin stimuliert die Tumoroxygenierung und Strahlensensibilität von Rhabdomyosarkomen der Ratte während kontinuierlicher hyperfraktionierter Bestrahlung. Strahlentherapie und Onkologie, 2004, 180(5): 306–314
doi: 10.1007/s00066-004-1198-1 pmid: 15127161
15 McCarty M F, O’Keefe J H, DiNicolantonio J J. Pentoxifylline for vascular health: a brief review of the literature. Open Heart, 2016, 3(1): e000365
doi: 10.1136/openhrt-2015-000365 pmid: 26870389
16 Brown J M, Giaccia A J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Research, 1998, 58(7): 1408–1416
pmid: 9537241
17 Hida K, Maishi N, Torii C, Hida Y. Tumor angiogenesis--characteristics of tumor endothelial cells. International Journal of Clinical Oncology, 2016, 21(2): 206–212
doi: 10.1007/s10147-016-0957-1 pmid: 26879652
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed