Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2017, Vol. 10 Issue (2) : 132-137     DOI: 10.1007/s12200-017-0681-0
Characterization of the cooling process of solid n-alkanes via terahertz spectroscopy
Chen JIANG, Honglei ZHAN, Kun ZHAO(), Cheng FU
Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
Download: PDF(396 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The terahertz (THz) time-domain spectroscopy technique was used to characterize the cooling process of solid n-alkanes. The THz waveforms of n-octadecane, n-nonadecane, n-eicosane, n-heneicosane, n-docosane, and n-pentacosane were obtained with the cooling time using the aforementioned noncontact optical method. The peak values of the THz signal were found to be related to the cooling temperature of n-alkanes. The THz wave was sensitive to the size and structure of particles in the liquid; therefore, the crystallization process of n-alkanes was monitored. An empirical equation based on signal attenuation was proposed to quantitatively distinguish the content change of structural order in the samples. Results present a new noncontact optical approach for characterizing wax crystallization via THz time-domain spectroscopy.

Keywords solid n-alkanes      terahertz (THz) time-domain spectroscopy      cooling process     
Corresponding Authors: Kun ZHAO   
Just Accepted Date: 24 February 2017   Online First Date: 17 March 2017    Issue Date: 05 July 2017
 Cite this article:   
Chen JIANG,Honglei ZHAN,Kun ZHAO, et al. Characterization of the cooling process of solid n-alkanes via terahertz spectroscopy[J]. Front. Optoelectron., 2017, 10(2): 132-137.
E-mail this article
E-mail Alert
Articles by authors
Honglei ZHAN
Cheng FU
Fig.1  Diagram of the THz-TDS setup with a sample cell
Fig.2  THz waveforms of cooling time in the samples: (a) n-octadecane C18, (b) n-nonadecane C19, (c) n-eicosane C20, (d) n-heneicosane C21, (e) n-docosane C22, and (f) n-pentaccosane C25. (g) Peak value (EP) with the cooling time of the six samples
Fig.3  Temperature variation in the different cooling times of the six samples
Fig.4  Peak value (EP) with the temperature of the six samples. Melting point is 28.18°C, 31.9°C, 36.8°C, 39°C, 44.4°C, and 53.3°C for C18H38, C19H40, C20H42, C21H44, C22H46, and C25H52, respectively
Fig.5  Temperature-governed signal attenuation for the six samples
1 SirotaE B. Supercooling and transient phase induced nucleation in n-alkane solutions.Journal of Chemical Physics, 2000, 112(1): 492–500
doi: 10.1063/1.480595
2 XieB Q, LiuG M, JiangS C, ZhaoY, WangD J. Crystallization behaviors of n-octadecane in confined space: crossover of rotator phase from transient to metastable induced by surface freezing.Journal of Physical Chemistry B, 2008, 112(42): 13310–13315
doi: 10.1021/jp712160k
3 SirotaE B. Supercooling, nucleation, rotator phase, and surface crystallization of n-alkane melts.Langmuir, 1998, 14(11): 3133–3136
doi: 10.1021/la970594s
4 YangX L, KilpatrickP. Asphaltenes and waxs do not interact synergistically and coprecipitate in solid organic deposits.Energy & Fuels, 2005, 19(4): 1360–1375
doi: 10.1021/ef050022c
5 VisintinR F G, LockhartT P, LapasinR, D’AntonaP. Structure of waxy crude oil emulsion gels.Journal of Non-Newtonian Fluid Mechanics, 2008, 149(1-3): 34–39
doi: 10.1016/j.jnnfm.2007.07.008
6 VenkatesanR, NagarajanN R, PasoK, YiY B, SastryA M, FoglerH S. The strength of paraffin gels formed under static and flow conditions.Chemical Engineering Science, 2005, 60(13): 3587–3598
doi: 10.1016/j.ces.2005.02.045
7 AgarwalK M, PurohitR C, SurianarayananM, JoshiG C, KrishnaR. Influence of waxes on the flow properties of Bombay high crude.Fuel, 1989, 68(7): 937–939
doi: 10.1016/0016-2361(89)90134-8
8 RønningsenH P, BjørndalB, HansenA B, PedersenW B. Wax precipitation from north sea crude oils.1. crystallization and dissolution temperatures, and Newtonian and non-Newtonian flow properties.Energy & Fuels, 1991, 5(6): 895–908
doi: 10.1021/ef00030a019
9 BriardA J, BouroukbaM, PetitjeanD, HubertN, MoiseJ C, DirandM. Thermodynamic and structural analyses and mechanisms of the crystallization of multi-alkane model mixtures similar to petroleum cuts.Fuel, 2006, 85(5-6): 764–777
doi: 10.1016/j.fuel.2005.07.020
10 PetitjeanD, SchmittJ F, FioraniJ M, LaineV, BouroukbaM, DirandM, CunatC. Some temperature-sensitive properties of pure linear alkanes and n-ary mixture.Fuel, 2006, 85(10-11): 1323–1328
doi: 10.1016/j.fuel.2005.12.008
11 WangS L, TozakiK I, HayashiH, HosakaS, InabaH. Observation of multiple phase transitions in n-C22H46 using a high resolution and super-sensitive DSC.Thermochimica Acta, 2003, 408(1-2): 31–38
doi: 10.1016/S0040-6031(03)00312-5
12 TozakiK I, InabaH, HayashiH, QuanC, NemotoN, KimuraT. Phase transitions of n-C32H66 measured by means of high resolution and super-sensitive DSC.Thermochimica Acta, 2003, 397(1-2): 155–161
doi: 10.1016/S0040-6031(02)00273-3
13 WangS L, TozakiK I, HayashiH, InabaH, YamamotoH. Observation of multiple phase transitions in some even n-alkanes using a high resolution and super-sensitive DSC.Thermochimica Acta, 2006, 448(2): 73–81
doi: 10.1016/j.tca.2006.06.022
14 SirotaE B, HerholdA B. Transient phase-induced nucleation.Science, 1999, 283(5401): 529–532
doi: 10.1126/science.283.5401.529
15 DirandM, ChevallierV, ProvostE, BouroukbaM, PetitjeanD. Multicomponent paraffin waxes and petroleum solid deposits: structural and thermodynamic state.Fuel, 1998, 77(12): 1253–1260
doi: 10.1016/S0016-2361(98)00032-5
16 SirotaE B, HerholdA B. Transient rotator phase induced nucleation in n-alkane melts.Polymer, 2000, 41(25): 8781–8789
doi: 10.1016/S0032-3861(00)00221-4
17 ZhengM J, DuW M. Phase behavior, conformations, thermodynamic properties, and molecular motion of multicomponent paraffin waxes: a roman spectroscopy study.Vibrational Spectroscopy, 2006, 40(2): 219–224
doi: 10.1016/j.vibspec.2005.10.001
18 ShinoharaY, KawasakiN, UenoS, KobayashiI, NakajimaM, AmemiyaY. Observation of the transient rotator phase of n-hexadecane in emulsified droplets with time-resolved tow-dimensional small- and wide-angle X-Ray scattering.Physical Review Letters, 2005, 94(9): 097801
doi: 10.1103/PhysRevLett.94.097801
19 GrigeraT S, Martin-MayorV, ParisiG, VerrocchioP. Phonon interpretation of the ‘boson peak’ in supercooled liquids.Nature, 2003, 422(6929): 289–292
doi: 10.1038/nature01475
20 ShintaniH, TanakaH. Universal link between the boson peak and transverse phonons in glass.Nature Materials, 2008, 7(11): 870–877
doi: 10.1038/nmat2293
21 LaibJ P, NickelD V, MittlemanD M. Terahertz vibrational modes induced by heterogeneous nucleation in n-alkanes.Chemical Physics Letters, 2010, 493(4-6): 279–282
doi: 10.1016/j.cplett.2010.05.075
22 ZeitlerJ A, NewnhamD A, TadayP F, ThrelfallT L, LancasterR W, BergR W, StrachanC J, PepperM, GordonK C, RadesT. Characteristics of temperature-induced phase transitions in five polymorphic forms of sulfathiazole by terahertz pulsed spectroscopy and differential scanning calorimetry.Journal of Pharmaceutical Sciences, 2006, 95(11): 2486–2498
doi: 10.1002/jps.20719
23 LaibJ P, MittlemanD M. Temperature-dependent terahertz spectroscopy of liquid n-alkanes.Journal of Infrared, Millimeter and Terahertz Waves, 2010, 31(9): 1015–1021
doi: 10.1007/s10762-010-9678-0
24 Al-DouseriF M, ChenY Q, ZhangX C. THz wave sensing for petroleum industrial applications.International Journal of Infrared and Millimeter Waves, 2006, 27(4): 481–503
doi: 10.1007/s10762-006-9102-y
25 CataldoF, AngeliniG, Aníbal García-HernándezD, ManchadoA. Far infrared (terahertz) spectroscopy of a series of polycyclic aromatic hydrocarbons and application to structure interpretation of asphaltenes and related compounds.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 111: 68–79
doi: 10.1016/j.saa.2013.03.077
26 TianL, ZhouQ L, ZhaoK, ShiY L, ZhaoD M, ZhaoS Q, ZhaoH, BaoR M, ZhuS M, MiaoQ, ZhangC L. Consistency-dependent optical properties of lubricating grease studied by terahertz spectroscopy.Chinese Physics B, 2011, 20(1): 010703
doi: 10.1088/1674-1056/20/1/010703
27 ZhanH L, WuS X, BaoR M, GeL N, ZhaoK. Qualitative identification of crude oils from different oil fields using terahertz time-domain spectroscopy.Fuel, 2015, 143: 189–193
doi: 10.1016/j.fuel.2014.11.047
28 NaftalyM, FouldsA P, MilesR E, DaviesA G. Terahertz transmission spectroscopy of nonpolar materials and relationship with composition and properties.International Journal of Infrared and Millimeter Waves, 2005, 26(1): 55–64
doi: 10.1007/s10762-004-2033-6
29 GaberB P, PeticolasW L. On the quantitative interpretation of biomembrane structure by Raman spectroscopy.Biochimica et Biophysica Acta, 1977, 465(2): 260–274
doi: 10.1016/0005-2736(77)90078-5
30 TarazonaA, KoglinE, CoussensB B, MeierR J. Conformational dependence of Raman frequencies and intensities in alkanes and polyethylene.Vibrational Spectroscopy, 1997, 14(2): 159–170
doi: 10.1016/S0924-2031(97)00013-1
31 MeierR J. Corrigendum to “Conformational dependence of vibrational frequencies and intensities in alkanes and polyethylene” by Tarazona et al (Vib. Spectrosc. 14 (1997) 159–170).Vibrational Spectroscopy, 1997, 15(1): 147
doi: 10.1016/S0924-2031(97)00029-5
32 KoglinE, MeierR J. Conformational dependence of Raman frequencies and intensities in alkanes and polyethylene.Computational and Theoretical Polymer Science, 1999, 9(3-4): 327–333
doi: 10.1016/S1089-3156(99)00022-7
Full text