Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (1) : 106-111     DOI: 10.1007/s12200-015-0472-4
RESEARCH ARTICLE |
Dispersion of double-slot microring resonators in optical buffer
Chuan WANG,Xiaoying LIU(),Peng ZHOU,Peng LI,Jia DU
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(855 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the optical packet switching network, optical buffer is an important device. Microring resonator optical buffers provide good delay performance and flexibility in design. By cascading multiple microring resonators, higher delay-bandwidth product is obtained, but the requirements of high integration and low dispersion are hard to satisfy simultaneously. Double-slot waveguide was proposed to construct highly integrated racetrack microring resonators in this study. Based on dispersion analysis of the thickness of each layer of a waveguide, the structure of waveguide was optimized to reach flat and low dispersion. Average dispersions of straight and 3 μm bend waveguides were 5.1 ps/(nm?km) and 4.4 ps/(nm?km), respectively. Besides, the additional loss from coupling was greatly reduced when applying proper relative displacement between straight and bend waveguides. Theoretical and design basis provided in this paper will help to develop multi-microring optical buffers in the future.

Keywords microring      optical buffer      double-slot waveguide     
Corresponding Authors: Xiaoying LIU   
Just Accepted Date: 26 January 2015   Online First Date: 13 February 2015    Issue Date: 18 March 2016
 Cite this article:   
Chuan WANG,Xiaoying LIU,Peng ZHOU, et al. Dispersion of double-slot microring resonators in optical buffer[J]. Front. Optoelectron., 2016, 9(1): 106-111.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-015-0472-4
http://journal.hep.com.cn/foe/EN/Y2016/V9/I1/106
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chuan WANG
Xiaoying LIU
Peng ZHOU
Peng LI
Jia DU
Fig.1  (a) Structure and (b) space diagram of microring resonator; (c) structure of double-slot waveguide
Fig.2  Dispersion tailored by thickness (nm) of upper waveguide
Fig.3  Dispersion tailored by thickness (nm) of upper slot
Fig.4  Dispersion tailored by thickness (nm) of lower slot
Fig.5  Dispersion tailored by thickness (nm) of lower slot
Fig.6  Dispersion tailored by thickness (nm) of lower slot
Fig.7  Dispersion tailored by radius (μm) of bend waveguide
Fig.8  Dispersion of straight double-slot waveguide
Fig.9  Keep the middle layer unchanged of (a) straight and (b) bend waveguide structure
Fig.10  Dispersion of bend waveguide before and after optimization
Fig.11  Mode distributions at 1.55 μm of (a) straight and (b) bend waveguide
Fig.12  Schematic of waveguide offset
1 Willner A E, Zhang L, Yang J Y. Micro-resonator devices and optical broadband access application. In: Proceedings of the International Society for Optics and Photonics, (OPTO). 2011, 795803
2 Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73
doi: 10.1002/lpor.201100017
3 Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photonics, 2007, 1(1): 65–71
doi: 10.1038/nphoton.2006.42
4 Cao T T, Zhang L B, Fei Y H, Cao Y M, Lei X, Chen S W. Design of a high-speed silicon electro-optical modulator based on an add-drop micro-ring resonator. Acta Physica Sinica, 2013, 62(19): 194210 (in Chinese)
5 Zhang X, Li Z Q, Tong K. A cross bus single microring electro-optical switch with U bend waveguide. Acta Physica Sinica, 2014, 63(9): 094207 (in Chinese)
6 Ren G H, Chen S W, Cao T T. Theoretical analysis of a thermal-optical tunable filter based on Vernier effect of cascade microring resonators. Acta Physica Sinica, 2012, 61(3): 034215 (in Chinese)
7 Fontaine N K, Yang J, Pan Z, Chu S, Chen W, Little B E, Ben Yoo S. Continuously tunable optical buffering at 40 Gb/s for optical packet switching networks. Journal of Lightwave Technology, 2008, 26(23): 3776–3783
doi: 10.1109/JLT.2008.2004793
8 Shinobu F, Ishikura N, Arita Y, Tamanuki T, Baba T. Continuously tunable slow-light device consisting of heater-controlled silicon microring array. Optics Express, 2011, 19(14): 13557–13564
doi: 10.1364/OE.19.013557 pmid: 21747511
9 Morichetti F, Melloni A, Breda A, Canciamilla A, Ferrari C, Martinelli M. A reconfigurable architecture for continuously variable optical slow-wave delay lines. Optics Express, 2007, 15(25): 17273–17282
doi: 10.1364/OE.15.017273 pmid: 19551021
10 Boeck R, Chrostowski L, Jaeger N A. Thermally tunable quadruple Vernier racetrack resonators. Optics Letters, 2013, 38(14): 2440–2442
doi: 10.1364/OL.38.002440 pmid: 23939074
11 Khurgin J B. Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. Journal of the Optical Society of America B, 2005, 22(5): 1062–1074
doi: 10.1364/JOSAB.22.001062
12 Poon J K, Scheuer J, Xu Y, Yariv A. Designing coupled-resonator optical waveguide delay lines. Journal of the Optical Society of America B, 2004, 21(9): 1665–1673
doi: 10.1364/JOSAB.21.001665
13 Poon J K, Zhu L, DeRose G A, Yariv A. Transmission and group delay of microring coupled-resonator optical waveguides. Optics Letters, 2006, 31(4): 456–458
doi: 10.1364/OL.31.000456 pmid: 16496885
14 Cooper M L, Gupta G, Schneider M A, Green W M, Assefa S, Xia F, Gifford D K, Mookherjea S. Waveguide dispersion effects in silicon-on-insulator coupled-resonator optical waveguides. Optics Letters, 2010, 35(18): 3030–3032
doi: 10.1364/OL.35.003030 pmid: 20847768
15 Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
doi: 10.1364/OL.29.001209 pmid: 15209249
16 Sun R, Dong P, Feng N N, Hong C Y, Michel J, Lipson M, Kimerling L. Horizontal single and multiple slot waveguides: optical transmission at λ= 1550 nm. Optics Express, 2007, 15(26): 17967–17972
doi: 10.1364/OE.15.017967 pmid: 19551093
17 Yu P, Qi B, Jiang X, Wang M, Yang J. Ultrasmall-V high-Q photonic crystal nanobeam microcavities based on slot and hollow-core waveguides. Optics Letters, 2011, 36(8): 1314–1316
doi: 10.1364/OL.36.001314 pmid: 21499341
18 Zhang L, Yue Y, Xiao-Li Y, Wang J, Beausoleil R G, Willner A E. Flat and low dispersion in highly nonlinear slot waveguides. Optics Express, 2010, 18(12): 13187–13193
doi: 10.1364/OE.18.013187 pmid: 20588447
19 Bao C, Yan Y, Zhang L, Yue Y, Willner A E. Tailoring of low chromatic dispersion over a broadband in silicon waveguides using a double-slot design. In: Proceedings of CLEO: QELS_Fundamental Science. 2013, JTu4A.53
20 Yan Y, Matsko A, Bao C, Maleki L, Willner A E. Increasing the spectral bandwidth of optical frequency comb generation in a microring resonator using dispersion tailoring slotted waveguide. In: Proceedings of IEEE Photonics Conference (IPC). 2013, 230–231
21 Zhu M, Liu H, Li X, Huang N, Sun Q, Wen J, Wang Z. Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. Optics Express, 2012, 20(14): 15899–15907
doi: 10.1364/OE.20.015899 pmid: 22772280
22 Sanchis P, Blasco J, Martínez A, Martí J. Design of silicon-based slot waveguide configurations for optimum nonlinear performance. Journal of Lightwave Technology, 2007, 25(5): 1298–1305
doi: 10.1109/JLT.2007.893909
23 Keivani H, Kargar A. Bending efficiency of bent multiple-slot waveguides. Chinese Physics Letters, 2009, 26(12): 124204
Related articles from Frontiers Journals
[1] Chuan WANG,Xiaoying LIU,Minming ZHANG,Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Front. Optoelectron., 2016, 9(4): 571-577.
[2] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[3] Liyang LU, Jiayang WU, Tao WANG, Yikai SU. Compact all-optical differential-equation solver based on silicon microring resonator[J]. Front Optoelec, 2012, 5(1): 99-106.
[4] Yingtao HU, Xi XIAO, Zhiyong LI, Yuntao LI, Yude YU, Jinzhong YU. Slow light in silicon microring resonators[J]. Front Optoelec Chin, 2011, 4(3): 282-287.
[5] Yikai SU, Gan ZHOU, Fei LI, Tao WANG. High-speed, compact silicon and hybrid plasmonic waveguides for signal processing[J]. Front Optoelec Chin, 2011, 4(3): 264-269.
[6] Yao CHEN, Junbo FENG, Zhiping ZHOU, Christopher J. SUMMERS, David S. CITRIN, Jun YU. Simple technique to fabricate microscale and nanoscale silicon waveguide devices[J]. Front Optoelec Chin, 2009, 2(3): 308-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed