Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2015, Vol. 8 Issue (4) : 431-438     DOI: 10.1007/s12200-014-0455-x
Fiber up-taper assisted Mach-Zehnder interferometer for high sensitive temperature sensing
Lili MAO1,2,Qizhen SUN1,2,Ping LU1,2,*(),Zefeng LAO3,Deming LIU1,2
1. National Engineering Laboratory for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan 430074, China
2. College of Optical and electronic information, Huazhong University of Science and Technology, Wuhan 430074, China
3. College of Electrical and electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(1198 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

A new in-line Mach-Zehnder interferometer (MZI) sensor consisting of a stub of multi-mode fiber and an up-taper was proposed and demonstrated. Temperature measurement can be carried out by detecting wavelength shift. Dependency of sensitivity on interferometer length and dip wavelength was discussed. Experimental results showed a maximum temperature sensitivity of 113.6 pm/°C can be achieved, which is superior to most fiber temperature sensors based on in-line MZIs within the range from 20°C to 80°C, also a good mechanical strength can be obtained. The proposed sensor is a good candidate for temperature measurement, due to the advantages of simple structure, easy fabrication, cost-effective and high sensitivity.

Keywords Mach-Zehnder interferometer (MZI)      multimode fiber (MMF)      up-taper      fiber sensor     
Corresponding Authors: Ping LU   
Just Accepted Date: 09 October 2014   Online First Date: 02 November 2014    Issue Date: 24 November 2015
 Cite this article:   
Lili MAO,Qizhen SUN,Ping LU, et al. Fiber up-taper assisted Mach-Zehnder interferometer for high sensitive temperature sensing[J]. Front. Optoelectron., 2015, 8(4): 431-438.
E-mail this article
E-mail Alert
Articles by authors
Lili MAO
Qizhen SUN
Ping LU
Zefeng LAO
Deming LIU

(a) Structure of a temperature sensor exploiting a section of multimode fiber (MMF) and an up-taper; (b) microscopic image of an up-taper. SMF: single mode fiber


Normalized transmission spectra for proposed temperature sensor with different interference lengths of (a) 30 mm, (b) 40 mm and (c) 50 mm


Spatial frequency spectra of proposed temperature sensor with different interference lengths of 30, 40 and 50 mm


Experimental setup of a temperature sensor. BBS: broadband light source; TEC: thermoelectric cooler; OSA: optical spectrum analyzer


(a) Transmission spectra of the proposed sensor with a length of 30 mm; (b) relationship between temperature and wavelength shift of resonant dips


(a) Transmission spectra of the proposed sensor with a length of 40 mm; (b) relationship between temperature and wavelength shift of resonant dips


(a) Transmission spectra of the proposed sensor with a length of 50 mm; (b) relationship between temperature and wavelength shift of resonant dips


Relationship between dip wavelength shift and temperature for investigating the repeatability of the experiment


Note: TF: thinned fiber


Comparison of performance of the reported in-line fiber Mach-Zehnder interferometers for temperature sensing

1 Li  E B. Design and test of multimode interference based optical fiber temperature sensors. Proceedings of the Society for Photo-Instrumentation Engineers, 2008, 7157: 71570F-1–71570F-9
doi: 10.1117/12.812007
2 Chen  C, Yu  S H, Yang  R, Wang  L, Guo  J C, Chen  Q D, Sun  H B. Monitoring thermal effect in femtosecond laser interaction with glass by fiber Bragg grating. Journal of Lightwave Technology, 2011, 29(14): 2126–2130
doi: 10.1109/JLT.2011.2151252
3 Guo  J C, Yu  Y S, Zhang  X L, Chen  C, Yang  R, Wang  C, Yang  R Z, Chen  Q D, Sun  H B. Compact long-period fiber gratings with resonance at second-order diffraction. IEEE Photonics Technology Letters, 2012, 24(16): 1393–1395
doi: 10.1109/LPT.2012.2204243
4 Ferreira  M S, Coelho  L, Schuster  K, Kobelke  J, Santos  J L, Frazão  O. Fabry-Pérot cavity based on a diaphragm-free hollow-core silica tube. Optics Letters, 2011, 36(20): 4029–4031
doi: 10.1364/OL.36.004029 pmid: 22002375
5 Lee  C L, Lee  L H, Hwang  H E, Hsu  J M. Highly sensitive air-gap fiber Fabry-Pérot interferometers based on polymer-filled hollow core fibers. IEEE Photonics Technology Letters, 2012, 24(2): 149–151
doi: 10.1109/LPT.2011.2174632
6 Li  X F, Lin  S, Liang  J X, Zhang  Y P, Oigawa  H, Ueda  T. Fiber-optic temperature sensor based on difference of thermal expansion coefficient between fused silica and metallic material. IEEE Photonics Journal, 2012, 4(1): 155–162
doi: 10.1109/JPHOT.2011.2181943
7 Liu  Y, Qu  S, Li  Y. Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown. Optics Letters, 2013, 38(3): 335–337
doi: 10.1364/OL.38.000335 pmid: 23381429
8 Li  E, Wang  X, Zhang  C. Fiber-optic temperature sensor based on interference of selective higher-order modes. Applied Physics Letters, 2006, 89(9): 091119
doi: 10.1063/1.2344835
9 Wu  D, Zhu  T, Liu  M. A high temperature sensor based on a peanut-shape structure Michelson interferometer. Optics Communications, 2012, 285(24): 5085–5088
doi: 10.1016/j.optcom.2012.06.091
10 Jasim  A A, Harun  S W, Arof  H, Ahmad  H. Inline microfiber Mach–Zehnder interferometer for high temperature sensing. IEEE Sensors Journal, 2013, 13(2): 626–628
doi: 10.1109/JSEN.2012.2224106
11 Nguyen  L V, Hwang  D, Moon  S, Moon  D S, Chung  Y. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Optics Express, 2008, 16(15): 11369–11375
doi: 10.1364/OE.16.011369 pmid: 18648456
12 Lu  P, Chen  Q. Femtosecond laser microfabricated fiber Mach-Zehnder interferometer for sensing applications. Optics Letters, 2011, 36(2): 268–270
doi: 10.1364/OL.36.000268 pmid: 21263522
13 Lu  P, Men  L, Sooley  K, Chen  Q Y. Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature. Applied Physics Letters, 2009, 94(13): 131110
14 Li  L, Xia  L, Xie  Z, Liu  D. All-fiber Mach-Zehnder interferometers for sensing applications. Optics Express, 2012, 20(10): 11109–11120
doi: 10.1364/OE.20.011109 pmid: 22565734
15 Wang  Y, Li  Y, Liao  C, Wang  D N, Yang  M, Lu  P. High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer. IEEE Photonics Technology Letters, 2010, 22(1): 39–41
doi: 10.1109/LPT.2009.2035638
16 Geng  Y, Li  X, Tan  X, Deng  Y, Yu  Y. High-sensitivity Mach-Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper. IEEE Sensors Journal, 2011, 11(11): 2891–2894
doi: 10.1109/JSEN.2011.2146769
17 Liu  Y, Peng  W, Liang  Y Z, Zhang  X, Zhou  X, Pan  L. Fiber-optic Mach-Zehnder interferometric sensor for high-sensitivity high temperature measurement. Optics Communications, 2013, 300: 194–198
doi: 10.1016/j.optcom.2013.02.054
18 Frazão  O, Silva  S F O, Viegas  J, Baptista  J M, Santos  J L, Kobelke  J, Schuster  K. All fiber Mach-Zehnder interferometer based on suspended twin-core fiber. IEEE Photonics Technology Letters, 2010, 22(17): 1300–1302
doi: 10.1109/LPT.2010.2054071
19 Zhang  S, Zhang  W, Gao  S, Geng  P, Xue  X. Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper. Optics Letters, 2012, 37(21): 4480–4482
doi: 10.1364/OL.37.004480 pmid: 23114336
20 Zhao  C L, Wang  Z, Zhang  S, Qi  L, Zhong  C, Zhang  Z, Jin  S, Guo  J, Wei  H. Phenomenon in an alcohol not full-filled temperature sensor based on an optical fiber Sagnac interferometer. Optics Letters, 2012, 37(22): 4789–4791
doi: 10.1364/OL.37.004789 pmid: 23164914
21 Moon  D S, Kim  B H, Lin  A, Sun  G, Han  Y G, Han  W T, Chung  Y. The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber. Optics Express, 2007, 15(13): 7962–7967
doi: 10.1364/OE.15.007962 pmid: 19547123
22 Zheng  X B, Liu  Y G, Wang  S, Han  T T, Wei  C W, Chen  J. Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer. Applied Physics Letters, 2012, 100(14): 141104
doi: 10.1063/1.3699026
23 Han  T, Liu  Y G, Wang  Z, Guo  J, Wu  Z, Wang  S, Li  Z, Zhou  W. Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor. Optics Express, 2013, 21(1): 122–128
doi: 10.1364/OE.21.000122 pmid: 23388902
Related articles from Frontiers Journals
[1] Ran HAO,Jiamin JIN,Xinchang WEI,Xiaofeng JIN,Xianmin ZHANG,Erping LI. Recent developments in graphene-based optical modulators[J]. Front. Optoelectron., 2014, 7(3): 277-292.
[2] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
[3] Jian LIU, Hao ZHANG, Bo LIU. Temperature measurement based on photonic crystal modal interferometer[J]. Front Optoelec Chin, 2010, 3(4): 418-422.
[4] Yan LIU, Bo LIU, Hao ZHANG, Yinping MIAO. Mach-Zehnder interferometer based on core-cladding mode coupling in single mode fibers[J]. Front Optoelec Chin, 2010, 3(4): 364-369.
[5] Xin LIU, Deming LIU, Wei WU, Zheng QIN. A modified dual-wavelength matrix calculation method[J]. Front Optoelec Chin, 2009, 2(3): 285-288.
[6] Xu ZHANG, Deming LIU, Hairong LIU, Qizhen SUN, Zhifeng SUN, Ziheng XU, Wengang WANG. High-power EDFA applied in distributed optical fiber Raman temperature sensor system[J]. Front Optoelec Chin, 2009, 2(2): 210-214.
Full text