Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 160-185     DOI: 10.1007/s12200-016-0633-0
REVIEW ARTICLE |
Recent advances in microwave photonics
Ming LI(),Ninghua ZHU()
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Download: PDF(6583 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microwave photonics (MWP) is an interdisciplinary field that combines two different areas of microwave engineering and photonics. It has several key features by transferring signals between the optical domain and microwave domain, which leads to the advantages of broad operation bandwidth for generation, processing and distribution of microwave signals and high resolution for optical spectrum measurement. In this paper, we comprehensively review past and current status of MWP in China by introducing the representative works from most of the active MWP research groups. Future prospective is also discussed from the national strategy to key enabling technology that we have developed.

Keywords microwave photonics (MWP)      integrated microwave photonics (IMWP)      optical analog device and system      direct modulation laser      radio over fiber      phase stabilized analog optical link      optoelectronic oscillators (OEOs)      microwave photonics filter (MPF)      arbitrary waveform generation (AWG)      optical phase locked looping (OPLL)      microwave photonics front-ends (MWP-FE)      optical vector network analyzer     
Corresponding Authors: Ming LI,Ninghua ZHU   
Just Accepted Date: 16 March 2016   Online First Date: 29 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-016-0633-0
http://journal.hep.com.cn/foe/EN/Y2016/V9/I2/160
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming LI
Ninghua ZHU
Fig.1  Publications and citations records in the MWP topic of China, USA and Japan in the past 20 years (Data: from Web of Sciences)
Fig.2  Total publications and average citation of each publication of the active countries (Data: from Web of Sciences)
year type research topics principle investigator (PI)
2004 863 key technology of 10 Gb/s laser module for optical communications Ninghua Zhu(IOS-CAS)
2007 863 key technology of integrated microwave photonic phase shifter based on SOI/PDLC Weiyou Chen(Jilin Univ.)
2007 863 study on high speed MWP electro-optic modulator based on novel polymer materials Xiaogong Wang(Tsinghua Univ.)
2009 863 high-speed linear modulated laser and transceiver module for radio over fiber Liang Xie(IOS-CAS)
2009 863 research on the key technology of microwave photonic detection based on optical and wireless convergence Xiaoxia Zhang(UESTC)
2011 863 photonic integration technology and system application Ninghua Zhu(IOS-CAS)
2011 973 ultra high speed and low power photonic integrated circuits technology for information processing Jianping Chen(SJTU)
2012 973 basic research on MWP for broadband and large dynamic-range millimeter wave devices and application Xiaoping Zheng(Tsinghua Univ.)
2012 973 basic research on MWP devices and integrated systems for broadband ubiquitous access Yuefeng Ji(BUPT)
Tab.1  Selected funded major projects on MWP in the past few years
functionality microwave devices optical devices MWP devices
source oscillator laser direct modulation laser/OEO
modulation modulator electric absorber/LiNO3 broadband linear modulator
waveguide RF cable optical fiber RF cable and optical fiber
detection detector PD broadband linear PD
amplification RF amplifier EDFA/SOA RF and optical amplifier
filter RF filter optical filter MWP filter
Tab.2  Comparison of microwave, optical and MWP devices
Fig.3  Prototype devices and bandwidth characteristics of the 24 GHz analog direct modulation laser [8]
Fig.4  Experimental setup for microwave signal generation using an EAM integrated in between two DFB lasers [13]
Fig.5  (a) Optical spectrum and (b) corresponding electrical spectrum (dashed line). The electrical spectrum after adjusting the bias current of the DFB laser 2 is also included [13]
Fig.6  AFL (upper) consisting of a DFB, a phase and an amplifier section; dual-mode state of an AFL (lower left); tunable output from an AFL-based OEO (lower right). SCH: separate confinement heterostructure; MQW: multiple quantum well [14,15]
Fig.7  (a) Schematic of the experiment system setup. ML: master laser; SL: slave laser, i.e., microsquare laser; PA: power amplifier; PSA: PSA series spectrum analyzer; SMF: single-mode fiber; OSA: optical spectrum analyzer; (b) principle schematic of photonic generated microwave inside the microcavity laser. T: time; EFnEFp: the difference of the Fermi levels [16,17]
Fig.8  Full-band RF photonic frontend. (a) Schematic diagram of the full-band RF photonic frontend based on the integrated full-band tunable signal processor; (b) measured SFDR of the frontend from L-band to U-band, covering from 1 to 65 GHz [18, 19]
Fig.9  High responsivity, high speed and high power integrated photodiodes based on back-to-back stacked UTC structure. CPW: coplanar waveguide [20]
Fig.10  High spectral purity mm-wave carrier generation by modulation sideband injection locking of integrated dual wavelength laser diode (LD) [21]. ML: master laser; SL: slave laser
Fig.11  Concept and principle of the notch MPF with ultra-high peak rejection and the measured RF responses of tunable ultra-high peak rejection MPF under different optical carrier wavelengths. LSB: lower sideband; USB: upper sideband [22]
Fig.12  (a) Scanning electron microscope (SEM) images of the cascaded microring resonators (CMRRs); (b) and (c) tunability of central frequency of the MPF; (d) and (e) tunability of bandwidth of the MPF. FSR: free spectral range [23]
Fig.13  (a) Schematic structure of the RTTDL. The switch is based on a 2×2 multimode?interference (MMI); (b) optical microscope image of the fabricated chip; (c) optical photo of the package chip; (d) measured output pulses with 10 ps to 1.27 ns optical delays with respect to the reference pulse; (e) measured frequency responses of the unwrapped transmission phase for the minimum and the maximum delays [24]
Fig.14  (a) Micrograph of the fabricated SCMR and measured microwave frequency responses for varied applied DC voltages; (b) micrograph of the fabricated SCMR with its drop port as the output, and temporal waveforms of the generated 29-GHz / 39-GHz MMW signals [25]
Fig.15  Schematic diagram of the frequency-shifted heterodyne method within one setup. In the case of the Mach-Zehnder modulator (MZM) as DUT, the microwave frequency of MZM is set close to twice of that of PM. In the case of PM as DUT, the microwave frequency of PM is set close to twice of that of MZM. In the case of PD as DUT, the microwave frequency of MZM is set close to that of PM [29]. ESA: E series spectrum analyzer
Fig.16  Incoherent-BOS-based MPF features single-bandpass, widely tunable (0-20 GHz), arbitrary shape with Q value controllable. Followings show some figures to prove the abilities of the filter [41]. PC: polarization controller; BPD: balanced photodetector
Fig.17  Shape keeps unchanged when tuned from DC-20 GHz, and the highest Q value is 634 [41]
Fig.18  Unchanged flat-top shape with lower Q value when tuned from DC-20 GHz [41]
Fig.19  (a) Experimental setup; (b) frequency response of the IIR filters with one loop; (c) frequency response of the IIR filter with two cascaded loops [43]. DML: directly modulated laser; VNA: vector network analyzer; EA: electrical amplifier; PD: photo detector; ODL: optical delay line
Fig.20  Structure diagram for integrated access network. OLT: optical line terminal; ODN: optical distribution network [4547]
Fig.21  60 GHz HD video real-time optical access platform
Fig.22  Experimental setup for stable dissemination millimeter-wave signal system [4851]. OFCG: optical frequency comb generator; PMC: polarization maintaining coupler; AWG: arrayed waveguide grating
Fig.23  Allan deviation of remote distribution system [4851]
Fig.24  (a) Measured and theoretical (solid line) amplitude comparison function (ACF) when Pm=270, 285 and 300 mW; (b) measured microwave frequencies when the input microwave frequency is tuned from 0 to 30 GHz; (c) distribution of the measurement errors [54]
Fig.25  Schematic illustration of the sub-Nyquist sampled photonic analog-to-digital converter based on of the techniques of photonic time stretch and compressive sensing.LPF: low pass filter; DSP: digital signal processing; PRBS: pseudorandom binary sequence [5561]
Fig.26  Conceptual architecture of multi-band satellite repeater based on optical frequency combs. LNA: low noise amplifier; WDM: wavelength-division multiplexing [62,63]
Fig.27  MWP research activities in Beihang University based on OFCs [64]
Fig.28  Filter bandwidth, central frequency and selectivity tuning of SBS based MPF [6771]
Fig.29  Different approaches for the realization of large-capacity/long-distance wireless mm-wave signal transmission [72]. MIMO: multiple-input multiple-output
Fig.30  Schematic diagram of the high-resolution optical vector analyzer based on optical single-sideband modulation [80]. OSSB: optical single-sideband; ODUT: optical device-under-test
Fig.31  Block diagram scheme of a conceptual software-defined satellite payload based on MWP; experimental demonstration of 2 ′2 microwave photonic switch for HD video [81]
Fig.32  Schematic diagram of the proposed distributed MIMO chaotic radar based on WDM technology, geometric model of two-dimensional localization with two transmitters and two receivers, and the geometric locations of six samples of the estimated positions and their corresponding actual positions [82]
Fig.33  Experimental setup for photonic chaotic UWB signal generation [83]. VA: variable attenuator; EAM: electro-absorption modulator; OOK: on-off keying
Fig.34  Waveforms (a) and RF spectra (b) of the experimentally generated chaotic UWB signal
Fig.35  Single sideband (SSB) radio over fiber by using the integrated waveguide tunable microring resonator [87]
Fig.36  Schematic diagram of the stable RF phase distribution scheme [88]. AWG: array waveguide grating; PS: power splitter; OC: optical circulator
Fig.37  Proposed OVNA with improved accuracy [89]. TLS: tunable laser source; TOBPF: tunable optical bandpass filter; EVNA: electrical vector network analyzer; ASE: amplified spontaneous emission
Fig.38  Proposed IFM system.ISO: isolator [90]
Fig.39  Phase-shifted DFB-SOA. (a) Schematic diagram and (b) the physical image of the packaged phase-shifted DFB-SOA [125]
1 Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330
doi: 10.1038/nphoton.2007.89
2 Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335
doi: 10.1109/JLT.2008.2009551
3 Waterhouse R, Novack D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microwave Magazine, 2015, 16(8): 84–92
doi: 10.1109/MMM.2015.2441593
4 Iezekiel S, Burla M, Klamkin J, Marpaung D, Capmany J. RF engineering meets optoelectronics: progress in integrated microwave photonics. IEEE Microwave Magazine, 2015, 16(8): 28–45
doi: 10.1109/MMM.2015.2442932
5 Ghelfi P, Laghezza F, Scotti F, Serafino G, Pinna S, Onori D, Lazzeri E, Bogoni A. Photonics in radar systems: RF integration for state-of-the-art functionality. IEEE Microwave Magazine, 2015, 16(8): 74–83
doi: 10.1109/MMM.2015.2441591
6 Capmany J, Li G, Lim C, Yao J. Microwave photonics: current challenges towards widespread application. Optics Express, 2013, 21(19): 22862–22867
doi: 10.1364/OE.21.022862 pmid: 24104173
7 Marpaung D, Roeloffzen C, Heideman R, Leinse A, Sales S, Capmany J. Integrated microwave photonics. Laser & Photonics Reviews, 2013, 7(4): 506–538
doi: 10.1002/lpor.201200032
8 Xie L, Man J W, Wang B J, Liu Y, Wang X, Yuan H Q, Zhao L J, Zhu H L, Zhu N H, Wang W. 24-GHz directly modulated DFB laser modules for analog applications. IEEE Photonics Technology Letters, 2012, 24(5): 407–409
doi: 10.1109/LPT.2011.2179026
9 Li S, Zheng X, Zhang H, Zhou B. Compensation of dispersion-induced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation. Optics Letters, 2011, 36(4): 546–548
doi: 10.1364/OL.36.000546 pmid: 21326451
10 Zheng X, Zhang G, Li S, Zhang H, Zhou B. All-optical signal processing for linearity enhancement of Mach-Zehnder modulators. Chinese Science Bulletin, 2014, 59(22): 2655–2660
doi: 10.1007/s11434-014-0442-z
11 Wang X, Liu Z, Wang S, Sun D, Dong Y, Hu W. Photonic radio-frequency dissemination via optical fiber with high-phase stability. Optics Letters, 2015, 40(11): 2618–2621
doi: 10.1364/OL.40.002618 pmid: 26030572
12 Deng Y, Li M, Tang J, Sun S, Huang N, Zhu N. Widely tunable single-passband microwave photonic filter based on DFB-SOA-assisted optical carrier recovery. IEEE Photonics Journal, 2015, 7(5): 5501108-1–5501108-8
doi: 10.1109/JPHOT.2015.2475612
13 Zhu N H, Zhang H G, Man J W, Zhu H L, Ke J H, Liu Y, Wang X, Yuan H Q, Xie L, Wang W. Microwave generation in an electro-absorption modulator integrated with a DFB laser subject to optical injection. Optics Express, 2009, 17(24): 22114–22123
doi: 10.1364/OE.17.022114 pmid: 19997458
14 Pan B, Lu D, Sun Y, Yu L, Zhang L, Zhao L. Tunable optical microwave generation using self-injection locked monolithic dual-wavelength amplified feedback laser. Optics Letters, 2014, 39(22): 6395–6398
doi: 10.1364/OL.39.006395 pmid: 25490477
15 Lu D, Pan B, Chen H, Zhao L. Frequency-tunable optoelectronic oscillator using a dual-mode amplified feedback laser as an electrically controlled active microwave photonic filter. Optics Letters, 2015, 40(18): 4340–4343
doi: 10.1364/OL.40.004340 pmid: 26371931
16 Zou L, Huang Y, Lv X, Liu B, Long H, Yang Y, Xiao J, Du Y. Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing. Photonics Research, 2014, 2(6): 177–181
doi: 10.1364/PRJ.2.000177
17 Zou L, Liu B, Lv X, Yang Y, Xiao J, Huang Y. Integrated semiconductor twin-microdisk laser under mutually optical injection. Applied Physics Letters, 2015, 106(19): 191107-1–191107-4
doi: 10.1063/1.4921098
18 Yu H, Chen M, Guo Q, Hoekman M, Chen H, Leinse A, Heideman R G, Yang S, Xie S. A full-band RF photonic receiver based on the integrated ultra-high Q bandpass filter. In: Proceedings of Optical Fiber Communication Conference and Exhibition. 2015, 1–3
19 Yu H, Chen M, Guo Q, Hoekman M, Chen H, Leinse A, Heideman R G, Mateman R, Yang S, Xie S. All-optical full-band RF receiver based on an integrated ultra-high-Q bandpass filter. Journal of Lightwave Technology, 2016, 34(2): 701–706
doi: 10.1109/JLT.2015.2458432
20 Shi T, Xiong B, Sun C, Luo Y. Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth. IEEE Photonics Technology Letters, 2013, 25(2): 136–139
doi: 10.1109/LPT.2012.2229703
21 Huang J, Sun C, Song Y, Xiong B, Luo Y. Influence of master laser's lineshape on the optically generated microwave carrier by injection locking. Applied Physics Express, 2009, 2(7): 072502-1–072502-3
doi: 10.1143/APEX.2.072502
22 Long Y, Wang J. Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator. Optics Express, 2015, 23(14): 17739–17750
doi: 10.1364/OE.23.017739 pmid: 26191836
23 Dong J, Liu L, Gao D, Yu Y, Zheng A, Yang T, Zhang X. Compact notch microwave photonic filters using on-chip integrated microring resonators. IEEE Photonics Journal, 2013, 5(2): 5500307-1–5500307-8
doi: 10.1109/JPHOT.2013.2245883
24 Xie J, Zhou L, Li Z, Wang J, Chen J. Seven-bit reconfigurable optical true time delay line based on silicon integration. Optics Express, 2014, 22(19): 22707–22715
doi: 10.1364/OE.22.022707 pmid: 25321740
25 Wu J, Peng J, Liu B, Pan T, Zhou H, Mao J, Yang Y, Qiu C, Su Y. Passive silicon photonic devices for microwave photonic signal processing. Optics Communications, 2015, doi:10.1016/j.optcom.2015.07.045
26 Wu X M, Man J W, Xie L, Liu Y, Qi X Q, Wang L X, Liu J G, Zhu N H. Novel method for frequency response measurement of optoelectronic devices. IEEE Photonics Technology Letters, 2012, 24(7): 575–577
doi: 10.1109/LPT.2012.2183122
27 Zhang S, Wang H, Zou X, Zhang Y, Lu R, Liu Y. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne. Optics Letters, 2015, 40(12): 2854–2857
doi: 10.1364/OL.40.002854 pmid: 26076279
28 Wang H, Zhang S, Zou X, Zhang Y, Lu R, Zhang Z, Liu Y. Calibration-free and bias-drift-free microwave characterization of dual-drive Mach-Zehnder modulators using heterodyne mixing. Optical Engineering, 2016, 55(3): 031109-1–031109-6
doi: 10.1117/1.OE.55.3.031109
29 Zhang S, Wang H, Zou X, Zhang Y, Lu R, Liu Y. Self-calibrating measurement of high-speed electro-optic phase modulators based on two-tone modulation. Optics Letters, 2014, 39(12): 3504–3507
doi: 10.1364/OL.39.003504 pmid: 24978522
30 Zhang S, Wang H, Zou X, Zhang Y, Lu R, Liu Y. Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning. IEEE Photonics Journal, 2014, 6(4): 5501008-1–5501008-8
doi: 10.1109/JPHOT.2014.2343991
31 Zhang S, Wang H, Zou X, Zhang Y, Lu R, Li H, Liu Y. Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors. IEEE Photonics Technology Letters, 2015, 27(9): 1014–1017
doi: 10.1109/LPT.2015.2405253
32 Li S, Zheng X, Zhang H, Zhou B. Compensation of dispersion-induced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation. Optics Letters, 2011, 36(4): 546–548
doi: 10.1364/OL.36.000546 pmid: 21326451
33 Zheng X, Zhang G, Li S, Zhang H, Zhou B. All-optical signal processing for linearity enhancement of Mach-Zehnder modulators. Chinese Science Bulletin, 2014, 59(22): 2655–2660
doi: 10.1007/s11434-014-0442-z
34 Zhang G, Zheng X, Li S, Zhang H, Zhou B. Postcompensation for nonlinearity of Mach-Zehnder modulator in radio-over-fiber system based on second-order optical sideband processing. Optics Letters, 2012, 37(5): 806–808
doi: 10.1364/OL.37.000806 pmid: 22378400
35 Zhang G, Li S, Zheng X, Zhang H, Zhou B, Xiang P. Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeter-wave ROF links. Optics Express, 2012, 20(15): 17214–17219
doi: 10.1364/OE.20.017214
36 Zhang G, Zheng X, Li S.Millimeter-wave over fiber transmitter with subcarrier upconversion and nonlinear compensation. In: Proceedings of Asia-Pacific Microwave Photonics Conference, 2012
37 Song Y, Li S, Zheng X, Zhang H, Zhou B. True time-delay line with high resolution and wide range employing dispersion and optical spectrum processing. Optics Letters, 2013, 38(17): 3245–3248
doi: 10.1364/OL.38.003245 pmid: 23988925
38 Li L, Zhang G, Zheng X, Li S, Zhang H, Zhou B. Suppression for dispersion induced phase noise of an optically generated millimeter wave employing optical spectrum processing. Optics Letters, 2012, 37(19): 3987–3989
doi: 10.1364/OL.37.003987 pmid: 23027254
39 Zhou X, Zheng X, Wen H, Zhang H, Zhou B. Optical arbitrary waveform generator applicable to pulse generation and chromatic dispersion compensation of a remote UWB over fiber system. Optics Express, 2011, 19(26): B391–B398
doi: 10.1364/OE.19.00B391 pmid: 22274047
40 Xue X, Zheng X, Zhang H, Zhou B. Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source. Optics Express, 2011, 19(19): 18423–18429
doi: 10.1364/OE.19.018423 pmid: 21935210
41 Xue X, Zheng X, Zhang H, Zhou B. Highly reconfigurable microwave photonic single-bandpass filter with complex continuous-time impulse responses. Optics Express, 2012, 20(24): 26929–26934
doi: 10.1364/OE.20.026929 pmid: 23187547
42 Yang J, Chan E H W, Wang X, Feng X, Guan B. Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor. Optics Express, 2015, 23(9): 12100–12110
doi: 10.1364/OE.23.012100 pmid: 25969298
43 Liu J, Guo N, Li Z, Yu C, Lu C. Ultrahigh-Q microwave photonic filter with tunable Q value utilizing cascaded optical-electrical feedback loops. Optics Letters, 2013, 38(21): 4304–4307
doi: 10.1364/OL.38.004304 pmid: 24177079
44 Xin X, Zhang L, Liu B, Yu J. Dynamic l-OFDMA with selective multicast overlaid. Optics Express, 2011, 19(8): 7847–7855
doi: 10.1364/OE.19.007847 pmid: 21503096
45 Zhang L, Xin X, Liu B, Zhao K, Yu C. A novel WDM-OFDM-PON architecture with centralized lightwave and PolSK-assisted multicast overlay. In: Proceedings of National Fiber Optic Engineers Conference, Optical Society of America. 2010, JThA25
46 Liu B, Xin X, Zhang L, Yu J. 109.92-Gb/s WDM-OFDMA uni-PON with dynamic resource allocation and variable rate access. Optics Express, 2012, 20(10): 10552–10561
doi: 10.1364/OE.20.010552 pmid: 22565681
47 Zhang L, Xin X, Liu B, Wang Y, Yu J, Yu C. OFDM modulated WDM-ROF system based on PCF-supercontinuum. Optics Express, 2010, 18(14): 15003–15008
doi: 10.1364/OE.18.015003 pmid: 20639986
48 Wang X, Liu Z, Wang S, Sun D, Dong Y, Hu W. Photonic radio-frequency dissemination via optical fiber with high-phase stability. Optics Letters, 2015, 40(11): 2618–2621
doi: 10.1364/OL.40.002618 pmid: 26030572
49 Sun D, Dong Y, Shi H, Xia Z, Liu Z, Wang S, Xie W, Hu W. Distribution of high-stability 100.04 GHz millimeter wave signal over 60 km optical fiber with fast phase-error-correcting capability. Optics Letters, 2014, 39(10): 2849–2852
doi: 10.1364/OL.39.002849 pmid: 24978219
50 Sun D, Dong Y, Yi L, Wang S, Shi H, Xia Z, Xie W, Hu W. Photonic generation of millimeter and terahertz waves with high phase stability. Optics Letters, 2014, 39(6): 1493–1496
doi: 10.1364/OL.39.001493 pmid: 24690821
51 Wang S, Sun D, Dong Y, Xie W, Shi H, Yi L, Hu W. Distribution of high-stability 10 GHz local oscillator over 100 km optical fiber with accurate phase-correction system. Optics Letters, 2014, 39(4): 888–891
doi: 10.1364/OL.39.000888 pmid: 24562233
52 Feng D, Xie H, Chen G, Qian L, Sun J. Simultaneous generation of a frequency-multiplied and phase-shifted microwave signal with large tunability. Optics Express, 2014, 22(15): 18372–18378
doi: 10.1364/OE.22.018372 pmid: 25089456
53 Feng D, Sun J, Xie H. Control of the optical carrier to sideband ratio in optical double/single sideband modulation by the phase variation of RF signals. Optics Communications, 2015, 353: 30–34
doi: 10.1016/j.optcom.2015.05.004
54 Feng D, Xie H, Qian L, Bai Q, Sun J. Photonic approach for microwave frequency measurement with adjustable measurement range and resolution using birefringence effect in highly non-linear fiber. Optics Express, 2015, 23(13): 17613–17621
doi: 10.1364/OE.23.017613 pmid: 26191769
55 Chi H, Mei Y, Chen Y, Wang D, Zheng S, Jin X, Zhang X. Microwave spectral analysis based on photonic compressive sampling with random demodulation. Optics Letters, 2012, 37(22): 4636–4638
doi: 10.1364/OL.37.004636 pmid: 23164863
56 Chen Y, Yu X, Chi H, Jin X, Zhang X, Zheng S, Galili M. Compressive sensing in a photonic link with optical integration. Optics Letters, 2014, 39(8): 2222–2224
doi: 10.1364/OL.39.002222 pmid: 24978956
57 Chen Y, Yu X, Chi H, Zheng S, Zhang X, Jin X, Galili M. Compressive sensing with a microwave photonic filter. Optics Communications, 2015, 338: 428–432
doi: 10.1016/j.optcom.2014.11.012
58 Zhu Z, Chi H, Zheng S, Jin T, Jin X, Zhang X. Analysis of compressive sensing with optical mixing using a spatial light modulator. Applied Optics, 2015, 54(8): 1894–1899
doi: 10.1364/AO.54.001894 pmid: 25968363
59 Chen Y, Ding Y, Zhu Z, Chi H, Zheng S, Zhang X, Jin X, Galili M, Yu X. Photonic compressive sensing with a micro-ring-resonator-based microwave photonic filter. Optics Communications, 2015, doi: 10.1016/j.optcom.2015.06.080
60 Chi H, Chen Y, Mei Y, Jin X, Zheng S, Zhang X. Microwave spectrum sensing based on photonic time stretch and compressive sampling. Optics Letters, 2013, 38(2): 136–138
doi: 10.1364/OL.38.000136 pmid: 23454940
61 Chen Y, Chi H, Jin T, Zheng S, Jin X, Zhang X. Sub-Nyquist sampled analog-to-digital conversion based on photonic time stretch and compressive sensing with optical random mixing. Journal of Lightwave Technology, 2013, 31(21): 3395–3401
doi: 10.1109/JLT.2013.2282088
62 Yang X, Xu K, Yin J, Dai Y, Yin F, Li J, Lu H, Liu T, Ji Y. Optical frequency comb based multi-band microwave frequency conversion for satellite applications. Optics Express, 2014, 22(1): 869–877
doi: 10.1364/OE.22.000869 pmid: 24515046
63 Xu K, Wang R, Dai Y, Yin F, Li J, Ji Y, Lin J. Microwave photonics: radio-over-fiber links, systems, and applications. Photonics Research, 2014, 2(4): B54–B63
doi: 10.1364/PRJ.2.000B54
64 Yan J, Xia Z, Zhang S, Bai M, Zheng Z. A flexible waveforms generator based on a single dual-parallel Mach-Zehnder modulator. Optics Communications, 2015, 334: 31–34
doi: 10.1016/j.optcom.2014.08.005
65 Fang X, Bai M, Ye X, Miao J, Zheng Z. Ultra-broadband microwave frequency down-conversion based on optical frequency comb. Optics Express, 2015, 23(13): 17111–17119
doi: 10.1364/OE.23.017111 pmid: 26191719
66 Zhao X, Zheng Z, Liu L, Wang Q, Chen H, Liu J. Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser. Optics Express, 2012, 20(23): 25584–25589
doi: 10.1364/OE.20.025584 pmid: 23187376
67 Wei W, Yi L, Jaouën Y, Hu W. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber. Optics Express, 2014, 22(19): 23249–23260
doi: 10.1364/OE.22.023249 pmid: 25321794
68 Wei W, Yi L, Jaouën Y, Morvan M, Hu W. Brillouin rectangular optical filter with improved selectivity and noise performance. IEEE Photonics Technology Letters, 2015, 27(15): 1593–1596
doi: 10.1109/LPT.2015.2432115
69 Yi L, Wei W, Jaouen Y, Hu W. Ideal rectangular microwave photonic filter with high selectivity based on stimulated Brillouin scattering. In: Proceedings of Optical Fiber Communication Conference, Optical Society of America. 2015, Tu3F.5
70 Yi L, Wei W, Jaouen Y, Shi M, Han B, Morvan M, Hu W. Polarization-independent rectangular microwave photonic filter based on stimulated brillouin scattering. Journal of Lightwave Technology, 2016, 34(2): 669–675
doi: 10.1109/JLT.2015.2475297
71 Yi L, Wei W, Hu W. Design and performance evaluation of narrowband rectangula optical filter based on stimulated Brillouin scattering in fiber. In: Proceedings of International Conference on Optical Communications and Networks. 2014, 1–2
72 Yu J, Li X, Chi N. Faster than fiber: over 100-Gb/s signal delivery in fiber wireless integration system. Optics Express, 2013, 21(19): 22885–22904
doi: 10.1364/OE.21.022885 pmid: 24104175
73 Li X, Dong Z, Yu J, Chi N, Shao Y, Chang G K. Fiber-wireless transmission system of 108 Gb/s data over 80 km fiber and 2×2 multiple-input multiple-output wireless links at 100 GHz W-band frequency. Optics Letters, 2012, 37(24): 5106–5108
doi: 10.1364/OL.37.005106 pmid: 23258020
74 Li X, Yu J, Zhang J, Dong Z, Li F, Chi N. A 400G optical wireless integration delivery system. Optics Express, 2013, 21(16): 18812–18819
doi: 10.1364/OE.21.018812 pmid: 23938796
75 Yu J, Li X, Zhang J, Xiao J. 432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing. In: Proceedings of European Conference on Optical Communication. 2014, 1–3
76 Xiao J, Yu J, Li X, Xu Y, Zhang Z, Chen L. 40-Gb/s PDM-QPSK signal transmission over 160-m wireless distance at W-band. Optics Letters, 2015, 40(6): 998–1001
doi: 10.1364/OL.40.000998 pmid: 25768166
77 Li X, Yu J, Zhang Z, Xu Y. Field trial of 80-Gb/s PDM-QPSK signal delivery over 300-m wireless distance with MIMO and antenna polarization multiplexing at W-band. In: Proceedings of Optical Fiber Communication Conference, Optical Society of America. 2015, Th5A.5
78 Li X, Yu J, Xiao J. 1003 (100 Gb/s×100 m×100 GHz) optical wireless system. In: Proceedings of European Conference on Optical Communication. 2015, 1–3
79 Román J E, Frankel M Y, Esman R D. Spectral characterization of fiber gratings with high resolution. Optics Letters, 1998, 23(12): 939–941
doi: 10.1364/OL.23.000939 pmid: 18087390
80 Tang Z, Pan S, Yao J. A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator. Optics Express, 2012, 20(6): 6555–6560
doi: 10.1364/OE.20.006555 pmid: 22418538
81 Pan S, Zhu D, Liu S, Xu K, Dai Y, Wang T, Liu J, Zhu N, Xue Y, Liu N. Satellite payloads pay off. IEEE Microwave Magazine, 2015, 16(8): 61–73
doi: 10.1109/MMM.2015.2441619
82 Fu J, Chen X, Pan S. A fiber-distributed multistatic ultra-wideband radar. In: Proceedings of International Conference on Optical Communications and Networks (ICOCN). 2015, 1–3
83 Zheng J, Zhang M, Wang A, Wang Y. Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback. Optics Letters, 2010, 35(11): 1734–1736
doi: 10.1364/OL.35.001734 pmid: 20517398
84 Zhang M, Liu T, Wang A, Zheng J, Meng L, Zhang Z, Wang Y. Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser. Optics Letters, 2011, 36(6): 1008–1010
doi: 10.1364/OL.36.001008 pmid: 21403758
85 Zhang M, Ji Y, Zhang Y,Wu Y, Xu H, Xu W. Remote radar based on chaos generation and radio over fiber. IEEE Photonics Journal, 2014, 6(5): 7902412-1–7902412-12
86 Ji Y, Zhang M, Wang Y, Wang P, Wang A, Wu Y, Xu H, Zhang Y. Microwave-photonic sensor for remote water-level monitoring based on chaotic laser. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24(03): 1450032-1–1450032-7
doi: 10.1142/S0218127414500321
87 Han X, Wang L, Wang Y, Zou P, Gu Y, Teng J, Wang J, Jian X, Morthier G, Zhao M. UV-soft imprinted tunable polymer waveguide ring resonator for microwave photonic filtering. Journal of Lightwave Technology, 2014, 32(20): 3924–3932
doi: 10.1109/JLT.2014.2310496
88 Li W, Wang W T, Sun W H, Wang W Y, Zhu N H. Stable radio-frequency phase distribution over optical fiber by phase-drift auto-cancellation. Optics Letters, 2014, 39(15): 4294–4296
doi: 10.1364/OL.39.004294 pmid: 25078160
89 Li W, Sun W H, Wang W T, Wang L X, Liu J G, Zhu N H. Reduction of measurement error of optical vector network analyzer based on DPMZM. IEEE Photonics Technology Letters, 2014, 26(9): 866–869
doi: 10.1109/LPT.2014.2308523
90 Li W, Zhu N H, Wang L X. Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution. Optics Letters, 2012, 37(2): 166–168
doi: 10.1364/OL.37.000166 pmid: 22854455
91 Venema L. Photonic technologies. Nature, 2003, 424(6950): 809
doi: 10.1038/424809a
92 Azaña J, Madsen C K, Takiguchi K, Cincontti G. Special issue on “optical signal processing”. IEEE/OSA Journal Ligthwave Technology, 2006, 24(7): 2484–2767
93 Ngo N Q, Yu S F, Tjin S C, Kam C H. A new theoretical basis of higher-derivative optical differentiators. Optics Communications, 2004, 230(1-3): 115–129
doi: 10.1016/j.optcom.2003.11.048
94 Azaña J. Ultrafast analog all-optical signal processors based on fiber-grating devices. IEEE Photonics Journal, 2010, 2(3): 359–386
doi: 10.1109/JPHOT.2010.2047941
95 Slavík R, Park Y, Kulishov M, Morandotti R, Azaña J. Ultrafast all-optical differentiators. Optics Express, 2006, 14(22): 10699–10707
doi: 10.1364/OE.14.010699 pmid: 19529477
96 Park Y, Azaña J, Slavík R. Ultrafast all-optical first- and higher-order differentiators based on interferometers. Optics Letters, 2007, 32(6): 710–712
doi: 10.1364/OL.32.000710 pmid: 17308610
97 Ashrafi R, Li M, Azaña J. Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators. IEEE Photonics Journal, 2013, 5(2): 7100311-1–7100311-12
doi: 10.1109/JPHOT.2013.2256117
98 Li M, Janner D, Yao J, Pruneri V. Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration. Optics Express, 2009, 17(22): 19798–19807
doi: 10.1364/OE.17.019798 pmid: 19997201
99 Li M, Jeong H S, Azaña J, Ahn T J. 25-terahertz-bandwidth all-optical temporal differentiator. Optics Express, 2012, 20(27): 28273–28280
doi: 10.1364/OE.20.028273 pmid: 23263061
100 Li M, Yao J. Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating. Journal of Lightwave Technology, 2011, 29(17): 2506–2511
doi: 10.1109/JLT.2011.2159827
101 Li M, Shao L, Albert J, Yao J. Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating. IEEE Photonics Technology Letters, 2011, 23(4): 251–253
doi: 10.1109/LPT.2010.2098475
102 Ferrera M, Park Y, Razzari L, Little B E, Chu S T, Morandotti R, Moss D J, Azaña J. On-chip CMOS-compatible all-optical integrator. Nature Communications, 2010, 1(3): 29-1–29-5
doi: 10.1038/ncomms1028 pmid: 20975692
103 Azaña J. Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator. Optics Letters, 2008, 33(1): 4–6
doi: 10.1364/OL.33.000004 pmid: 18157239
104 Slavík R, Park Y, Ayotte N, Doucet S, Ahn T J, LaRochelle S, Azaña J. Photonic temporal integrator for all-optical computing. Optics Express, 2008, 16(22): 18202–18214
doi: 10.1364/OE.16.018202 pmid: 18958098
105 Malacarne A, Ashrafi R, Li M, LaRochelle S, Yao J, Azaña J. Single-shot photonic time-intensity integration based on a time-spectrum convolution system. Optics Letters, 2012, 37(8): 1355–1357
doi: 10.1364/OL.37.001355 pmid: 22513684
106 Li M, Yao J. Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a 2-D array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 2012, 24(15): 1319–1321
doi: 10.1109/LPT.2012.2202316
107 Li M, Yao J. All-optical short-time fourier transform based on a temporal pulse-shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 2011, 23(20): 1439–1441
doi: 10.1109/LPT.2011.2162624
108 Li M, Yao J. Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating. IEEE Photonics Technology Letters, 2010, 22(21): 1559–1561
doi: 10.1109/LPT.2010.2066964
109 Li M, Yao J. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Optics Letters, 2010, 35(2): 223–225
doi: 10.1364/OL.35.000223 pmid: 20081975
110 Ashrafi R, Li M, LaRochelle S, Azaña J. Superluminal space-to-time mapping in grating-assisted co-directional couplers. Optics Express, 2013, 21(5): 6249–6256
doi: 10.1364/OE.21.006249 pmid: 23482194
111 Ashrafi R, Li M, Belhadj N, Dastmalchi M, LaRochelle S, Azaña J. Experimental demonstration of superluminal space-to-time mapping in long period gratings. Optics Letters, 2013, 38(9): 1419–1421
doi: 10.1364/OL.38.001419 pmid: 23632504
112 Ashrafi R, Li M, Azaña J. Tsymbol/s optical coding based on long-period gratings. IEEE Photonics Technology Letters, 2013, 25(10): 910–913
doi: 10.1109/LPT.2013.2255034
113 Fernández-Ruiz M R, Li M, Dastmalchi M, Carballar A, LaRochelle S, Azaña J. Picosecond optical signal processing based on transmissive fiber Bragg gratings. Optics Letters, 2013, 38(8): 1247–1249
doi: 10.1364/OL.38.001247 pmid: 23595447
114 Li M, Dumais P, Ashrafi R, Bazargani H P, Quelene J, Callender C, Azaña J. Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers. IEEE Photonics Technology Letters, 2012, 24(16): 1387–1389
doi: 10.1109/LPT.2012.2203335
115 Li M, Li Z, Yao J. Photonic generation of precisely π phase-shifted binary phase-coded microwave signal. IEEE Photonics Technology Letters, 2012, 24(22): 2001–2004
doi: 10.1109/LPT.2012.2217486
116 Li Z, Li M, Chi H, Zhang X, Yao J. Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating. IEEE Microwave and Wireless Components Letters, 2011, 21(12): 694–696
doi: 10.1109/LMWC.2011.2170673
117 Li M, Yao J. Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically pumped linearly chirped fiber Bragg grating. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(12): 3531–3537
doi: 10.1109/TMTT.2011.2169078
118 Li M, Han Y, Pan S,Yao J. Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system. IEEE Photonics Technology Letters, 2011, 23(11): 715–717
doi: 10.1109/LPT.2011.2132122
119 Li M, Shao L, Albert J, Yao J. Tilted fiber Bragg grating for chirped microwave waveform generation. IEEE Photonics Technology Letters, 2011, 23(5): 314–316
doi: 10.1109/LPT.2010.2102013
120 Li M, Wang C, Li W, Yao J. An unbalanced temporal pulse-shaping system for chirped microwave waveform generation. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 2968–2975
doi: 10.1109/TMTT.2010.2079070
121 Wang C, Li M, Yao J. Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system. IEEE Photonics Technology Letters, 2010, 22(17): 1285–1287
doi: 10.1109/LPT.2010.2053351
122 Weiner A M, Heritage J P, Kirschner E M. High-resolution femtosecond pulse shaping. Journal of the Optical Society of America B, 1988, 5(8): 1563–1572
doi: 10.1364/JOSAB.5.001563
123 Lepetit L, Chériaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. Journal of the Optical Society of America B, 1995, 12(12): 2467–2474
doi: 10.1364/JOSAB.12.002467
124 Liu W, Li M, Guzzon R S, Norberg E J, Parker J S, Lu M, Coldren L A, Yao J. A fully reconfigurable photonic integrated signal processor. Nature Photonics, 2016: 190–195
doi: 10.1038/nphoton.2015.281
125 Li M, Deng Y, Tang J, Sun S, Yao J, Azaña J, Zhu N. Reconfigurable optical signal processing based on a distributed feedback semiconductor optical amplifier. Scientific Reports, 2016, 6: 19985-1–19985-9
doi: 10.1038/srep19985 pmid: 26813252
Related articles from Frontiers Journals
[1] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[2] Ming LI,José AZA?A,Ninghua ZHU,Jianping YAO. Recent progresses on optical arbitrary waveform generation[J]. Front. Optoelectron., 2014, 7(3): 359-375.
[3] Yousaf KHAN, Xiangjun XIN, Aftab HUSSAIN, Liu BO, Shahryar SHAFIQUE. Generation and transmission of dispersion tolerant 10-Gbps RZ-OOK signal for radio over fiber link[J]. Front Optoelec, 2012, 5(3): 306-310.
[4] Shilie ZHENG, Sixuan GE, Hao CHI, Xiaofeng JIN, Xianmin ZHANG. Frequency response equalization in phase modulated RoF systems using optical carrier Brillouin processing[J]. Front Optoelec Chin, 2011, 4(3): 277-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed