Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 225-237     DOI: 10.1007/s12200-016-0624-1
REVIEW ARTICLE |
Novel types of photonic band crystal high power and high brightness semiconductor lasers
Md. Jarez MIAH1,*(),Vladimir P. KALOSHA1,Ricardo ROSALES1,Dieter BIMBERG1,2
1. Institute of Solid State Physics, Technical University of Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
2. King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia (KSA)
Download: PDF(2581 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel type of high power edge-emitting semiconductor laser (SL) with extended vertical photonic band crystal (PBC) waveguide was reviewed. Simulations predict narrow beam divergence, resulting from the thick PBC waveguide, to be independent of realistic variations of the growth parameters. Narrow ridge lasers fabricated along the simulations indeed demonstrate superior output power, narrow beam divergence, circular beam profile, excellent beam quality and very low astigmatism. Efficient fiber coupling decisive for most applications was thus eased. Stability of the laser under a wide range of operating temperature was demonstrated. Ultrashort pulses with few ps of duration at GHz repetition rates were generated by passively mode locking the lasers.

Keywords semiconductor laser (SL)      edge-emitting laser      high brightness laser      narrow beam divergence      high peak power pulses     
Corresponding Authors: Md. Jarez MIAH   
Just Accepted Date: 16 March 2016   Online First Date: 29 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Md. Jarez MIAH,Vladimir P. KALOSHA,Ricardo ROSALES, et al. Novel types of photonic band crystal high power and high brightness semiconductor lasers[J]. Front. Optoelectron., 2016, 9(2): 225-237.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-016-0624-1
http://journal.hep.com.cn/foe/EN/Y2016/V9/I2/225
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Md. Jarez MIAH
Vladimir P. KALOSHA
Ricardo ROSALES
Dieter BIMBERG
Fig.1  Beam parameter product and laser power requirement for different material processing applications [5]
Fig.2  Schematic drawing of a conventional edge-emitting laser with broad vertical beam divergence
Fig.3  Schematic drawing of a PBC laser with narrow vertical beam divergence [34]
Fig.4  (a) Schematic drawing of layer structure of a 1060 nm PBC laser with 15 pairs PBC layers; (b) refractive index (solid line, top axis) and calculated near-field distributions of the fundamental (solid line, bottom axis) and first higher order (dashed line, bottom axis) mode along vertical distance; (c) calculated far-field distribution of the fundamental mode; (d) calculated optical loss (square) and confinement factors (circle) of the first 20 modes [32]
Fig.5  Cavity length dependence of reciprocal differential quantum efficiency (a) and threshold current density (b) of BA lasers at T = 20°C in pulsed mode [32]
Fig.6  L-I characteristics of a 1.5 mm long BA laser at T = 0°C to 80°C in steps of 10°C in pulsed mode. Inset shows the corresponding threshold current density of the laser as a function of T
Fig.7  Vertical far-field distribution of a 3.0 mm long BA laser at T = 20°C in CW mode at I = 5.0 A. Inset shows the output power and corresponding PCE (upper) and emission spectrum (lower) of the laser as a function of drive current
Fig.8  (a) L-I-V characteristics and corresponding PCEs of a 5 μm and a 9 μm wide and 2.64 mm long RW lasers in CW mode at T = 20°C. Far-field distributions along with their Gaussian fits of the 5 μm (b) and 9 μm (c) wide RW laser in lateral and vertical directions at I = 2.0 and 2.6 A, respectively. FWHM beam divergence angles are indicated. The lasers are HR/AR coated
Fig.9  (a) Lateral and vertical M2 of the 5 μm wide RW laser from Fig. 8 as a function of drive current in CW mode. Maximum brightness B is indicated; (b) brightness and astigmatism of the 9 μm wide RW laser versus drive current in CW mode at T = 20°C. M2lateral and M2vertical at maximum brightness are indicated
Fig.10  (a) L-I curves and corresponding PCEs of a 6 μm wide and 2.64 mm long RW laser at T = 20°C to 80°C in 20°C steps; (b) lateral (bottom) and vertical (top) M2 of the laser as a function of drive current at different T; (c) measured astigmatism of the laser at different T versus drive current. The laser is HR/AR coated. All the measurements are performed in CW mode [34]
Fig.11  (a) Refractive index (solid line, top axis) and calculated near-field distributions of the fundamental (solid line, bottom axis) and first higher order (dashed line, bottom axis) mode along vertical distance; (b) calculated far-field distribution of the fundamental mode; (c) calculated optical loss (empty square) and confinement factors (filled square) of the first 20 modes [33]
Fig.12  Reciprocal differential quantum efficiency as a function of cavity length (a) and dependence of threshold current density on inverse cavity length (b) [33]
Fig.13  Far-field distributions of a 5 mm wide and 1.0 mm long single-section RW laser at I = 0.5 A [33]
Fig.14  Intensity distributions of second harmonics and their Gaussian fits for two section RW lasers with total cavity lengths of 1.8, 2.8 and 8.5 mm. FWHM pulse durations Dt are indicated. Inset shows RF spectrum of the 8.5 mm long laser at Vabs = -0.6 V and Igain = 1140 mA [33]
Fig.15  Output power of a 5 mm wide and 8.5 mm long two-section RW laser at different absorption voltages as a function of gain current
Fig.16  (a) Al content versus vertical distance of the laser structure containing 6 pairs of alternating epitaxial layers and a defect layer with four QWs; (b) simulated near-field amplitude of the fundamental mode 1 (red curve) and the first higher order mode 2 (green); (c) doping concentrations Nd and Na of the Si donors (black) and C acceptors (green), respectively, with high doping of the graded interface layers; (d) calculated far-field distribution of the fundamental mode
Fig.17  Comparison of the calculated current density versus drive voltage (a) for the structure C with 6 pairs (red curves) and structure A with 15 pairs (green) of alternating layers, 20 nm thick interface layers with the same doping level as in the adjacent layers (dashed) and a doping level of 2×1018 cm-3 (solid); (b) for the structure with 6 pairs of alternating layers and interface layers with a doping level 2×1018 cm-3 for thickness 0 nm (abrupt) (black dotted curve), 10 nm (green dashed), 20 nm (red solid), 50 nm (blue dotted-dashed)
Fig.18  (a) Reciprocal differential quantum efficiency as a function of cavity length; (b) threshold current density as a function of inverse cavity length
Fig.19  (a) L-I-V characteristics and corresponding PCEs of a 5 μm and a 9 μm wide RW laser with 2.64 cavity length at T = 20°C in CW mode. The laser facets are HR/AR coated; (b) far-field distributions of the 9 μm wide laser at different drive currents. FWHM beam divergence angles are indicated
Fig.20  Color-scale plot of CW-mode far-field distributions of the 5 μm wide RW laser at different drive currents in (a)–(d) at T = 20°C. FWHM beam divergence angle in lateral and vertical direction as function of operating current in (e)
1 Inoue Y, Fujikawa S. Diode-pumped Nd:YAG laser producing 122-W CW power at 1.319 μm. IEEE Journal of Quantum Electronics, 2000, 36(6): 751–756
doi: 10.1109/3.845733
2 Schulz W, Poprawe R. Manufacturing with novel high-power diode lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(4): 696–705
doi: 10.1109/2944.883386
3 Brauch U, Loosen P, Opower H. High-Power Diode Lasers: Fundamentals, Technology, Applications. In: Diehl R, ed. Berlin, Germany: Springer, 2000, 303–368
4 Hasler K H, Sumpf B, Adamiec P, Bugge F, Fricke J, Ressel P, Wenzel H, Erbert G, Tränkle G. 5-W DBR tapered lasers emitting at 1060 nm with a narrow spectral linewidth and a nearly diffraction-limited beam quality. IEEE Photonics Technology Letters, 2008, 20(19): 1648–1650
doi: 10.1109/LPT.2008.2002744
5 Woods S. Understanding materials processing lasers. Laser-Technik-Journal, 2009, 6(5): 23–26
doi: 10.1002/latj.200990070
6 Lambert R W, Ayling T, Hendry A F, Carson J M, Barrow D A, McHendry S, Scott C J, McKee A, Meredith W. Facet-passivation processes for the improvement of Al-containing semiconductor laser diodes. Journal of Lightwave Technology, 2006, 24(2): 956–961
doi: 10.1109/JLT.2005.861916
7 Murakami T, Ohtaki K, Matsubara H, Yamawaki T, Saito H, Isshiki K, Kokubo Y, Shima A, Kumabe H, Susaki W. A very narrow-beam AlGaAs laser with a thin tapered-thickness active layer (T3 laser). IEEE Journal of Quantum Electronics, 1987, 23(6): 712–719
doi: 10.1109/JQE.1987.1073422
8 Yen S T, Lee C P. A novel cladding structure for semiconductor quantum-well lasers with small beam divergence and low threshold current. IEEE Journal of Quantum Electronics, 1996, 32(9): 1588–1595
doi: 10.1109/3.535363
9 Lin G, Yen S T, Lee C P, Liu D C. Extremely small vertical far-field angle of InGaAs-AlGaAs quantum-well lasers with specially designed cladding structure. IEEE Photonics Technology Letters, 1996, 8(12): 1588–1590
doi: 10.1109/68.544686
10 Yang G W, Xu J Y, Xu Z T, Zhang J M, Chen L H, Wang Q M. Theoretical investigation on quantum well lasers with extremely low vertical beam divergence and low threshold current. Journal of Applied Physics, 1998, 83(1): 8–14
doi: 10.1063/1.366727
11 Smowton P M, Lewis G M, Yin M, Summers H D, Berry G, Button C C. 650-nm lasers with narrow far-field divergence with integrated optical mode expansion layers. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(3): 735–739
doi: 10.1109/2944.788444
12 Bogatov A P, Gushchik T I, Drakin A E, Nekrasov A P, Popovichev V V. Optimisation of waveguide parameters of laser InGaAs/AlGaAs/GaAs heterostructures for obtaining the maximum beam width in the resonator and the maximum output power. Quantum Electronics, 2008, 38(10): 935–939
doi: 10.1070/QE2008v038n10ABEH013901
13 Crump P, Pietrzak A, Bugge F, Wenzel H, Erbert G, Tränkle G. 975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers. Applied Physics Letters, 2010, 96(13): 131110–131110–3
doi: 10.1063/1.3378809
14 Pietrzak A, Crump P, Wenzel H, Bugge F, Erbert G, Tränkle G. High power 1060 nm ridge waveguide lasers with low-index quantum barriers for narrow divergence angle. In: Proceedings of Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science. 2010, CWE2: 1–2
15 Pietrzak A, Crump P, Wenzel H, Erbert G. Combination of low-index quantum barrier and super large optical cavity designs for ultranarrow vertical far-fields from high-power broad-area lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1715–1722
doi: 10.1109/JSTQE.2011.2109939
16 Shchukin V, Ledentsov N, Posilovic K, Kalosha V, Kettler T, Seidlitz D, Winterfeldt M, Bimberg D, Gordeev N Y, Karachinsky L Y, Novikov I I, Shernyakov Y M, Chunareva A V, Maximov M V, Bugge F, Weyers M. Tilted wave lasers: a way to high brightness sources of light. IEEE Journal of Quantum Electronics, 2011, 47(7): 1014–1027
doi: 10.1109/JQE.2011.2132116
17 Kelemen M T, Weber J, Rinner F, Rogg J, Mikulla M, Weimann G. High-brightness 1040-nm tapered diode lasers. Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 4947: 252–260
doi: 10.1117/12.468634
18 Kallenbach S, Kelemen M T, Aidam R, Lösch R, Kaufel G, Mikulla M, Weimann G. High-power high-brightness ridge-waveguide tapered diode lasers at 14xx nm. Proceedings of the Society for Photo-Instrumentation Engineers, 2005, 5738: 406–415
doi: 10.1117/12.588514
19 Kelemen M T, Weber J, Kallenbach S, Pfahler C, Mikulla M, Weimann G. Astigmatism and beam quality of high-brightness tapered diode lasers. Proceedings of the Society for Photo-Instrumentation Engineers, 2004, 5452: 233–243
doi: 10.1117/12.545221
20 Köhler B, Biesenbach J, Brand T, Haag M, Huke S, Noeske A, Seibold G, Behringer M, Luft J.High-brightness high-power kW-system with tapered diode laser bars. Proceedings of the Society for Photo-Instrumentation Engineers, 2005, 5711: 73–84
doi: 10.1117/12.589044
21 Ledentsov N N, Shchukin V A. Novel concepts for injection lasers. Optical Engineering, 2002, 41(12): 3193–3203
doi: 10.1117/1.1518677
22 Bimberg D, Posilovic K, Kalosha V, Kettler T, Seidlitz D, Shchukin V A, Ledentsov N N, Gordeev N Yu, Karachinsky L Y, Novikov I I, Maximov M V, Shernyakov Y M, Chunareva A V, Bugge F, Weyers M. High-power high-brightness semiconductor lasers based on novel waveguide concepts. Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7616: 76161I
doi: 10.1117/12.846577
23 Kalosha V P, Posilovic K, Kettler T, Shchukin V A, Ledentsov N N, Bimberg D. Simulations of the optical properties of broad-area edge-emitting semiconductor lasers at 1060 nm based on the PBC laser concept. Semiconductor Science and Technology, 2011, 26(7): 075014
doi: 10.1088/0268-1242/26/7/075014
24 Maximov M V, Shernyakov Y M, Novikov I I, Kuznetsov S M, Karachinsky L Y, Gordeev N Y, Kalosha V P, Shchukin V A, Ledentsov N N. High-performance 640-nm-range GaInP-AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence. IEEE Journal of Quantum Electronics, 2005, 41(11): 1341–1348
doi: 10.1109/JQE.2005.857066
25 Novikov I I, Karachinsky L Ya, Maximov M V, Shernyakov Yu M, Kuznetsov S M, Gordeev N Yu, Shchukin V A, Kopev P S, Ledentsov N N, Ben-Ami U, Kalosha V P, Sharon A, Kettler T, Posilovic K, Bimberg D, Mikhelashvili V, Eisenstein G. Single mode cw operation of 658 nm AlGaInP lasers based on longitudinal photonic band gap crystal. Applied Physics Letters, 2006, 88(23): 231108
doi: 10.1063/1.2211948
26 Maximov M V, Shernyakov Yu M, Novikov I I, Kuznetsov S M, Karachinsky L Y, Gordeev N Y, Soshnikov I P, Musikhin Y G, Kryzhanovskaya N V, Sharon A, Ben-Ami U, Kalosha V P, Zakharov N D, Werner P, Kettler T, Posilovic K, Shchukin V A, Ledentsov N N, Bimberg D. Longitudinal photonic bandgap crystal laser diodes with ultra-narrow vertical beam divergence. In: Proceedings of Physics & Simulation of Optoelectronic Devices XIV. 2006, 6115: 611513
doi: 10.1117/12.661389
27 Maximov M V, Shernyakov Y M, Novikov I I, Karachinsky L Y, Gordeev N Y, Ben-Ami U, Bortman-Arbiv D, Sharon A, Shchukin V A, Ledentsov N N, Kettler T, Posilovic K, Bimberg D. High-power low-beam divergence edge-emitting semiconductor lasers with 1- and 2-D photonic bandgap crystal waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(4): 1113–1122
doi: 10.1109/JSTQE.2008.916534
28 Posilovic K, Kettler T, Shchukin V A, Ledentsov N N, Pohl U W, Bimberg D, Fricke J, Ginolas A, Erbert G, Tränkle G, Jönsson J, Weyers M. Ultrahigh-brightness 850 nm GaAs/AlGaAs photonic crystal laser diodes. Applied Physics Letters, 2008, 93(22): 221102
doi: 10.1063/1.3040322
29 Novikov I I, Gordeev N Yu, Shernyakov Y M, Kiselev Yu Yu, Maximov M V, Kopev P S, Sharon A, Duboc R, Arbiv D B, Ben-Ami U, Shchukin V A, Ledentsov N N. High-power single mode (>>1 W) continuous wave operation of longitudinal photonic band crystal lasers with a narrow vertical beam divergence. Applied Physics Letters, 2008, 92(10): 103515
doi: 10.1063/1.2898517
30 Kettler T, Posilovic K, Karachinsky L Y, Ressel P, Ginolas A, Fricke J, Pohl U W, Shchukin V A, Ledentsov N N, Bimberg D, Jönsson J, Weyers M, Erbert G, Tränkle G. High-brightness and ultranarrow-beam 850-nm GaAs/AlGaAs photonic band crystal lasers and single-mode arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 901–908
doi: 10.1109/JSTQE.2009.2013179
31 Posilovic K, Kalosha V P, Winterfeldt M, Schulze J H, Quandt D, Germann T D, Strittmatter A, Bimberg D, Pohl J, Weyers M. High-power low-divergence 1060 nm photonic crystal laser diodes based on quantum dots. Electronics Letters, 2012, 48(22): 1419–1420
doi: 10.1049/el.2012.3174
32 Miah M J, Kettler T, Posilovic K, Kalosha V P, Skoczowsky D, Rosales R, Bimberg D, Pohl J, Weyers M. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area. Applied Physics Letters, 2014, 105(15): 151105
doi: 10.1063/1.4898010
33 Rosales R, Kalosha V P, Posilovic K, Miah M J, Bimberg D, Pohl J, Weyers M. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime. Applied Physics Letters, 2014, 105(16): 161101
doi: 10.1063/1.4899129
34 Miah M J, Kettler T, Kalosha V P, Posilovic K, Bimberg D, Pohl J, Weyers M. High temperature operation of 1060-nm high-brightness photonic band crystal lasers with very low astigmatism. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 4900206
35 Kalosha V P, Bimberg D. Device comprising a high brightness broad-area edge-emitting semiconductor laser and method of making the same. 2014, U.S. patent application, US20150288147
36 Numai T. Fundamentals of Semiconductor Lasers. In: Rhodes W T, ed. Berlin, Germany: Springer, 2004, 97–100
37 Agrawal G P, Dutta N K. Semiconductor Lasers. 3rd ed. Boston, MA, USA: Kluwer, 2001, 132–139
38 Wenzel H, Bugge F, Dallmer M, Dittmar F, Fricke J, Hasler K H, Erbert G. Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence. IEEE Photonics Technology Letters, 2008, 20(3): 214–216
doi: 10.1109/LPT.2007.913328
39 Tai K, Yang L, Wang Y H, Wynn J D, Cho A Y. Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers. Applied Physics Letters, 1990, 56(25): 2496–2498
doi: 10.1063/1.102869
40 Wenzel H, Dallmer M, Erbert G. Thermal lensing in high-power ridge-waveguide lasers. Optical and Quantum Electronics, 2008, 40(5): 379–384
doi: 10.1007/s11082-007-9176-3
41 Sellin R L, Ribbat C, Bimberg D, Rinner F, Konstanzer H, Kelemen M T, Mikulla M. High-reliability MOCVD-grown quantum dot laser. Electronics Letters, 2002, 38(16): 883–884
doi: 10.1049/el:20020602
42 Kalosha V P, Posilovic K, Bimberg D. Lateral-longitudinal modes of high-power inhomogeneous waveguide Lasers. IEEE Journal of Quantum Electronics, 2012, 48(2): 123–128
doi: 10.1109/JQE.2011.2169651
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed