Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 186-193     DOI: 10.1007/s12200-016-0622-3
Researches in microwave photonics based packages for millimeter wave system with wide bandwidth and large dynamic range
Xiaoping ZHENG(),Shangyuan LI,Hanyi ZHANG,Bingkun ZHOU
Deptartment of Electronic Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1549 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

This paper presents an introduction to the researches in microwave photonics based packages and its application, a 973 project (No. 2012CB315600), which focuses on addressing new requirements for millimeter wave (MMW) system to work with higher frequency, wider bandwidth, larger dynamic range and longer distance of signal distribution. Its key scientific problems, main research contents and objectives are briefed, and some latest achievements by the project team, including generation of linear frequency modulation wave (LFMW), tunable optoelectronic oscillator (OEO) with lower phase noise, reconfigurable filter with higher Q value, time delay line with wider frequency range, down conversion with gain, and local oscillator (LO) transmission with stable phase, are introduced briefly.

Keywords linear frequency modulation wave (LFMW) generation      tunable optoelectronic oscillator (OEO)      reconfigurable filter      time delay line      down-conversion      phase stable transmission     
Corresponding Authors: Xiaoping ZHENG   
Just Accepted Date: 26 February 2016   Online First Date: 28 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Xiaoping ZHENG,Shangyuan LI,Hanyi ZHANG, et al. Researches in microwave photonics based packages for millimeter wave system with wide bandwidth and large dynamic range[J]. Front. Optoelectron., 2016, 9(2): 186-193.
E-mail this article
E-mail Alert
Articles by authors
Xiaoping ZHENG
Shangyuan LI
Bingkun ZHOU
Fig.1  A simplified model of millimeter wave (MMW) system. BFN: beam forming network; LO: local oscillator; ADC: analog to digital converter
Fig.2  Linear frequency modulated wave (LFMW) generated optically. (a) its temporal waveform; (b) its time-frequency line; (c) PSLR with Hamming window
Fig.3  Nonlinearity compensation based on (a) OSP; compensation results with (b) MZM [13] and (c) EAM [14]. MMW: millimeter wave; OSP: optical signal processing; PD: photodetector; LCSLM: liquid crystal spatial light modulator; IMD3: 3rd order intermodulation distortion
Fig.4  Local oscillator (LO) over fiber transmission without/with dispersion compensation comparison with regards to (a) LO phase noise with 40 GHz LO frequency and 25 km transmission fiber [15]; (b) EVM, PE, and ME of the 200 Mbps 16 quadrature amplitude modulation (16-QAM) signal with 59 GHz LO frequency and 60 km transmission fiber [15]
Fig.5  Experimental setup of the single-bandpass complex-tap microwave photonic filter based on EES [19]. BOS: broadband optical source; C: optical coupler; PC: polarization controller; MZM: Mach-Zehnder modulator; VDL: variable delay line; DCF: dispersion-compensating fiber; BPD: balanced photodetector; A: RF amplifier
Fig.6  Tunable RF transfer function with or without TOD compensation when the passband is sinc-shape or flat-top [21]
Fig.7  Tunable OEOs by using (a) PM-based filter [22]; (b) an-Stokes SBS [23]. PM: phase modulator; SBS: stimulated Brillouin scattering; TOBPF: tunable optical bandpass filter; OC: optical coupler; OSA: optical spectrum analyzer; SMF: single-mode fiber; PD: photodetector; EA: electricalamplifier; EC: electrical coupler; LNA: low noise amplifier; PA: power amplifier; ESA: electrical spectrum analyzer
Fig.8  Schematic diagram of LO stable transmission over fiber
Fig.9  Diagram of the down-conversion system presented here [25]. ESA, electronic spectrum analyzer. ? is the phase of light wave. Δ? is the phase difference of sidebands between LO and RF frequency. Black dotted lines represent the transmitted spectrum of FBGs
1 Li M, Luk K M. A wideband circularly polarized antenna for microwave and millimeter-wave applications. IEEE Transactions on Antennas & Propagation, 2014, 62(4):1872–1879
doi: 10.1109/TAP.2014.2298246
2 Pi Z, Khan F. An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 2011, 49(6):101–107
doi: 10.1109/MCOM.2011.5783993
3 Brown W M, Pensa A F. History of Haystack. Lincoln Laboratory Journal, 2014, 21(1): 4–7
4 Kodama T, Tanaka I, Hayashi M, Koyama Y, Tadaki K, Shimakawa R, Kohno K, Tamura Y. From Mahalo-Subaru to Gracias-ALMA: resolving galaxy formation at its peak epoch. In: Proceedings of New Trends in Radio Astronomy in the ALMA Era: The 30th Anniversary of Nobeyama Radio Observatory. 2013, 37
5 El-Kamchouchy H, Saada K, Hafez E D S. Optimum stealthy aircraft detection using a multistatic radar. In: Proceeding of IEEE 16th International Conference on Advanced Communication Technology (ICACT). 2014, 337–342
6 Cooper K B, Dengler R J, Llombart N, Bryllert T, Chattopadhyay G, Schlecht E, Gill J, Lee C, Skalare A, Mehdi I, Siegel P H. Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar. IEEE Transactions on Microwave Theory & Techniques, 2008, 56(12): 2771–2778
doi: 10.1109/TMTT.2008.2007081
7 Savchenkov A A, Ilchenko V S, Liang W, Eliyahu D, Matsko A B, Seidel D, Maleki L. Voltage-controlled photonic oscillator. Optics Letters, 2010, 35(10): 1572–1574
doi: 10.1364/OL.35.001572 pmid: 20479812
8 Kasemir P, Sutton N, Radway M, Jeong B, Brown T, Filipović D S. Wideband analog and digital beam forming. In: Proceeding of IEEE International Conference on Telecommunication in Modern Satellite, Cable, and Broadcasting Services. 2009, 372–375
9 Wong P W, Hunter I C.Parallel-coupled switched delay line (SDL) reconfigurable microwave filter. In: Proceeding of IEEE MTT-S International Microwave Symposium. 2009, 513–516
10 Liao J, Chen B, Li S, Yang X. Novel photonic radio-frequency arbitrary waveform generation based on photonic digital-to-analog conversion with pulse carving. In: Proceeding of IEEE Conference on Lasers and Electro-Optics (CLEO), 2015
11 Zheng X, Zhang G, Li S, Zhang H, Zhou B. All-optical signal processing for linearity enhancement of Mach-Zehnder modulators. Chinese Science Bulletin, 2014, 59(22): 2655–2660
doi: 10.1007/s11434-014-0442-z
12 Zhou X, Zheng X, Wen H, Zhang H, Zhou B. Optical arbitrary waveform generator applicable to pulse generation and chromatic dispersion compensation of a remote UWB over fiber system. Optics Express, 2011, 19(26): B391–B398
doi: 10.1364/OE.19.00B391 pmid: 22274047
13 Zhang G, Zheng X, Li S, Zhang H, Zhou B. Postcompensation for nonlinearity of Mach-Zehnder modulator in radio-over-fiber system based on second-order optical sideband processing. Optics Letters, 2012, 37(5): 806–808
doi: 10.1364/OL.37.000806 pmid: 22378400
14 Li S, Zheng X, Zhang H, Zhou B. Highly linear millimeter-wave over fiber transmitter with subcarrier upconversion. In: Proceeding of IEEE Conference on Lasers and Electro-Optics (CLEO). 2011, 1–2
15 Li L, Zhang G, Zheng X, Li S, Zhang H, Zhou B.. Suppression for dispersion induced phase noise of an optically generated millimeter wave employing optical spectrum processing. Optics Letters, 2012, 37(19): 3987–3989
16 Li L, Zhang G, Zheng X, Li S, Zhang H, Zhou B. Phase noise suppression for single-sideband, modulation radio-over-fiber systems adopting optical spectrum processing. IEEE Photonics Technology Letters, 2013, 25(11): 1024–1026
doi: 10.1109/LPT.2013.2258901
17 Song Y, Li S, Zheng X, Zhang H, Zhou B. True time-delay line with high resolution and wide range employing dispersion and optical spectrum processing. Optics Letters, 2013, 38(17): 3245–3248
doi: 10.1364/OL.38.003245 pmid: 23988925
18 Zou D, Zheng X, Li S, Zhang H, Zhou B. High-Q microwave photonic filter with self-phase modulation spectrum broadening and third-order dispersion compensation. Chinese Optics Letters, 2014,12(8): 080601
doi: 10.3788/COL201412.080601
19 Xue X, Zheng X, Zhang H, Zhou B. Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source. Optics Express, 2011, 19(19): 18423–18429
doi: 10.1364/OE.19.018423 pmid: 21935210
20 Xue X, Zheng X, Zhang H, Zhou B. Highly reconfigurable microwave photonic single-bandpass filter with complex continuous-time impulse responses. Optics Express, 2012, 20(24): 26929–26934
doi: 10.1364/OE.20.026929 pmid: 23187547
21 Xue X, Zheng X, Zhang H, Zhou B. Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filter. Journal of Lightwave Technology, 2013, 31(13): 2263–2270
doi: 10.1109/JLT.2013.2265231
22 Xie X, Zhang C, Sun T, Guo P, Zhu X, Zhu L, Hu W, Chen Z. Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter. Optics Letters, 2013, 38(5): 655–657
doi: 10.1364/OL.38.000655 pmid: 23455255
23 Peng H, Xu Y, Zhang C, Guo P, Zhu L, Hu W, Chen Z. Widely tunable optoelectronic oscillator utilizing an optical notch filter based on the de-amplification of stimulated Brillouin scattering. In: Proceeding of IEEE Conference on Lasers and Electro-Optics (CLEO), 2015
24 Wang X, Liu Z, Wang S, Sun D, Dong Y, Hu W. Photonic radio-frequency dissemination via optical fiber with high-phase stability. Optics Letters, 2015, 40(11): 2618–2621
doi: 10.1364/OL.40.002618 pmid: 26030572
25 Sun D, Dong Y, Yi L, Wang S, Shi H, Xia Z, Xie W, Hu W. Photonic generation of millimeter and terahertz waves with high phase stability. Optics Letters, 2014, 39(6): 1493–1496
doi: 10.1364/OL.39.001493 pmid: 24690821
26 Jiang T, Yu S, Xie Q, Li J, Gu W. Photonic downconversion based on optical carrier bidirectional reusing in a phase modulator. Optics Letters, 2014, 39(17): 4990–4993PMID:25166056
doi: 10.1364/OL.39.004990
Full text