Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 312-317     DOI: 10.1007/s12200-016-0620-5
Single crystal erbium compound nanowires as high gain material for on-chip light source applications
Zhicheng LIU1,Hao SUN2,Leijun YIN1,Yongzhuo LI2,Jianxing ZHANG2,Cun-Zheng NING1,2,*()
1. School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(643 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1020 cm-3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonic applications. Er compounds could potentially solve this problem since they contain much higher Er3+ density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor crystal qualities. Recently, we explore a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl) in the form of nanowire, which facilitates the growth of high quality single crystal with relatively large Er3+ density (1.62 × 1022 cm–3). Previous optical results show that the high crystal quality of ECS material leads to a long lifetime up to 1 ms. The Er lifetime-density product was found to be the largest among all the Er containing materials. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement and 30 dB/cm net gain per unit length from a single ECS wire. As a result, such high-gain ECS nanowires can be potentially fabricated into ultra-compact lasers. Even though a single ECS nanowire naturally serves as good waveguide, additional feedback mechanism is needed to form an ultra-compact laser. In this work, we demonstrate the direct fabrication of 1D photonic crystal (PhC) air hole array structure on a single ECS nanowire using focused ion beam (FIB). Transmission measurement shows polarization-dependent stop-band behavior. For transverse electric (TE) polarization, we observed stop-band suppression as much as 12 dB with a 9 μm long airholed structure. Through numerical simulation, we showed that Q-factor as high as 11000 can be achieved at 1.53 μm for a 1D PhC micro-cavity on an ECS nanowire. Such a high Q cavity combined with the high material gain of ECS nanowires provides an attractive solution for ultra-compact lasers, an important goal of this research.

Keywords nanomaterials      rare-earth-doped materials      lasers      optical amplifiers      nanostructure fabrication      microcavity devices     
Corresponding Authors: Cun-Zheng NING   
Just Accepted Date: 26 February 2016   Online First Date: 29 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Zhicheng LIU,Hao SUN,Leijun YIN, et al. Single crystal erbium compound nanowires as high gain material for on-chip light source applications[J]. Front. Optoelectron., 2016, 9(2): 312-317.
E-mail this article
E-mail Alert
Articles by authors
Zhicheng LIU
Leijun YIN
Yongzhuo LI
Jianxing ZHANG
Cun-Zheng NING
Fig.1  PL spectrum of ECS across visible to NIR. The spectra are normalized at each emission band
Fig.2  Absorption and emission transitions with 800 nm laser pumping. The numbers at each emission transition represent the emission wavelengths, with the unit in nm
Fig.3  (a) and (b) Illustration of the 1D PhC structure in angled view and top view; (c) and (d) SEM images of the 14-period PhC grating in single ECS nanowire. Scale bar is 2 mm
Fig.4  (a) Illustration of the fiber-nanowire-fiber coupling system; (b) microscope image of the coupling system from the top view; (c) and (d) FDTD simulation of the E-field pattern under TE- and TM- polarization injection; (e) and (f) real-color images of the upconversion along the nanowire in (b) under TE- and TM- polarization injection at 1531 nm; (g) experimental (solid) and simulated transmission spectra under TE- (red) and TM- (blue) polarization injection. Scale bar is 10 μm
structure parameter value structure parameter value
width (w) 800 nm height (h) 800 nm
L 586 nm n* 15
r0 182 nm a 650 nm
r1 179 nm d1 641 nm
r2 177 nm d2 633 nm
r3 175 nm d3 625 nm
r4 173 nm d4 617 nm
Tab.1  Structure parameters of the designed 1D PhC micro-cavity on an ECS nanowire. The Q-factor of the fundamental mode in this microcavity is 1.1×105
Fig.5  (a) Design of 1D PhC micro-cavity on ECS nanowire; (b) E-field profile of the fundamental mode at 1.53 μm
1 Kenyon A J. Erbium in silicon. Semiconductor Science and Technology, 2005, 20(12): R65–R84
doi: 10.1088/0268-1242/20/12/R02
2 Mears R J, Reekie L, Jauncey I M, Payne D N. Low-noise erbium-doped fibre amplifier operating at 1.54 mm. Electronics Letters, 1987, 23(19): 1026–1028
doi: 10.1049/el:19870719
3 Park N, Dawson J W, Vahala K J, Miller C. All fiber, low threshold, widely tunable singl-frequency, erbium-doped fiber ring laser with a tandem fiber Fabry-Perot filter. Applied Physics Letters, 1991, 59(19): 2369–2371
doi: 10.1063/1.106018
4 Yan Y C, Faber A J, de Waal H, Kik P G, Polman A. Erbium–doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 mm. Applied Physics Letters, 1997, 71(20): 2922–2924
doi: 10.1063/1.120216
5 Kik P G, Polman A. Erbium doped optical-waveguide amplifiers on silicon. MRS Bulletin, 1998, 23(4): 48–54
6 Della Valle G, Taccheo S, Laporta P, Sorbello G, Cianci E, Foglietti V. Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange. Electronics Letters, 2006, 42(11): 632–633
doi: 10.1049/el:20060555
7 Bernhardi E H, van Wolferen H A G M, Agazzi L, Khan M R H, Roeloffzen C G H, Wörhoff K, Pollnau M, de Ridder R M. Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon. Optics Letters, 2010, 35(14): 2394–2396
doi: 10.1364/OL.35.002394 pmid: 20634841
8 Bradley J D B, Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers. Laser & Photonics Reviews, 2011, 5(3): 368–403
doi: 10.1002/lpor.201000015
9 Saini S, Chen K, Duan X, Michel J, Kimerling L C, Lipson M. Er2O3 for high-gain waveguide amplifiers. Journal of Electronic Materials, 2004, 33(7): 809–814
doi: 10.1007/s11664-004-0246-z
10 Miritello M, Savio R L, Piro A, Franzò G, Priolo F, Iacona F, Bongiorno C. Optical and structural properties of Er2O3 films grown by magnetron sputtering. Journal of Applied Physics, 2006, 100(1): 013502
doi: 10.1063/1.2208906
11 Zheng J, Ding W, Xue C, Zuo Y, Cheng B, Yu J, Wang Q, Wang G, Guo H. Highly efficient photoluminescence of Er2SiO5 films grown by reactive magnetron sputtering method. Journal of Luminescence, 2010, 130(3): 411–414
doi: 10.1016/j.jlumin.2009.10.005
12 Choi H J, Shin J H, Suh K, Seong H K, Han H C, Lee J C. Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence. Nano Letters, 2005, 5(12): 2432–2437
doi: 10.1021/nl051684h pmid: 16351192
13 Wang B, Guo R, Wang L, Wang X, Zhou Z. 1.53 μm electroluminescence of erbium excited by hot carriers in ErRE (RE= Yb, Y) silicates. In: Proceedings of Group IV Photonics (GFP). 2012, 72–74
14 Wang L, Guo R, Wang B, Wang X, Zhou Z. Hybrid Si3N4-Er/Yb/Y silicate waveguide amplifier with 1.25 dB/cm internal gain. In: Proceedings of Group IV Photonics (GFP). 2012, 249–251
15 Pan A, Yin L, Liu Z, Sun M, Liu R B, Nichols P L, Wang Y, Ning C Z. Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength. Optical Materials Express, 2011, 1(7): 1202–1209
doi: 10.1364/OME.1.001202
16 Yin L, Shelhammer D, Zhao G, Liu Z, Ning C Z. Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material. Applied Physics Letters, 2013, 103(12): 121902
doi: 10.1063/1.4821448
17 Liu Z, Yin L, Ning C Z. Extremely large signal enhancement in an erbium chloride silicate single-crystal nanowire. In: Proceedings of Conference on Lasers and Electro-Optics. San Jose: IEEE, 2013
18 Liu Z, Zhao G, Yin L, Ning C Z. Demonstration of net gain in an erbium chloride silicate single nanowire waveguide. In: Proceedings of Conference on Lasers and Electro-Optics. San Jose: IEEE, 2014
19 Suh K, Lee M, Chang J S, Lee H, Park N, Sung G Y, Shin J H. Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides. Optics Express, 2010, 18(8): 7724–7731
doi: 10.1364/OE.18.007724 pmid: 20588613
20 Bradley J D B, Agazzi L, Geskus D, Ay F, Wörhoff K, Pollnau M. Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon. Journal of the Optical Society of America B, 2010, 27(2): 187–196
doi: 10.1364/JOSAB.27.000187
21 Mears R, Reekie L, Poole S, Payne D. Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 mm. Electronics Letters, 1986, 22(3): 159–160
doi: 10.1049/el:19860111
22 Deotare P B, McCutcheon M W, Frank I W, Khan M, Lončar M. High quality factor photonic crystal nanobeam cavities. Applied Physics Letters, 2009, 94(12): 121106
doi: 10.1063/1.3107263
23 Liu H C, Yariv A. Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators. Optics Express, 2012, 20(8): 9249–9263
doi: 10.1364/OE.20.009249 pmid: 22513637
24 Quan Q, Deotare P B, Loncar M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Applied Physics Letters, 2010, 96(20): 203102
doi: 10.1063/1.3429125
25 Sauvan C, Lecamp G, Lalanne P, Hugonin J. Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities. Optics Express, 2005, 13(1): 245–255
doi: 10.1364/OPEX.13.000245 pmid: 19488349
26 McCutcheon M W, Loncar M. .Design of an ultrahigh quality factor silicon nitride photonic crystal nanocavity for coupling to diamond nanocrystals. 2008, arXiv preprint arXiv:0809.5066
27 Zain A R, Johnson N P, Sorel M, De La Rue R M. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI). Optics Express, 2008, 16(16): 12084–12089
doi: 10.1364/OE.16.012084 pmid: 18679482
28 Quan Q, Loncar M. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Optics Express, 2011, 19(19): 18529–18542
doi: 10.1364/OE.19.018529 pmid: 21935223
Related articles from Frontiers Journals
[1] Xuepeng ZHAN,Huailiang XU,Hongbo SUN. Femtosecond laser processing of microcavity lasers[J]. Front. Optoelectron., 2016, 9(3): 420-427.
[2] Yunsong ZHAO,Yeyu ZHU,Lin ZHU. Integrated coherent combining of angled-grating broad-area lasers[J]. Front. Optoelectron., 2016, 9(2): 290-300.
[3] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[4] Sudharsanan SRINIVASAN,Michael DAVENPORT,Martijn J. R. HECK,John HUTCHINSON,Erik NORBERG,Gregory FISH,John BOWERS. Low phase noise hybrid silicon mode-locked lasers[J]. Front. Optoelectron., 2014, 7(3): 265-276.
[5] Bin WEI, Zhengmao WU, Tao DENG, Guangqiong XIA. Nonlinear dynamics of 1550 nm VCSELs subject to polarization-preserved optical feedback and orthogonal optical injection[J]. Front Optoelec, 2013, 6(3): 243-250.
[6] Xia GUO, Xinxin LUAN, Wenjuan WANG, Chunwei GUO, Guangdi SHEN. Scalabilities of LEDs and VCSELs with tunnel-regenerated multi-active region structure[J]. Front Optoelec, 2013, 6(1): 97-101.
[7] Xuelin YANG, Cen WU, Weisheng HU. High-speed optical binary data pattern recognition for network security applications[J]. Front Optoelec, 2012, 5(3): 271-278.
[8] Guangcun SHAN, Xinghai ZHAO, Mingjun HU, Chan-Hung SHEK, Wei HUANG. Vertical-external-cavity surface-emitting lasers and quantum dot lasers[J]. Front Optoelec, 2012, 5(2): 157-170.
Full text