Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (4) : 544-548     DOI: 10.1007/s12200-016-0608-1
RESEARCH ARTICLE |
Characterizing PM2.5 in Beijing and Shanxi Province using terahertz radiation
Ning LI1,Honglei ZHAN1(),Kun ZHAO1(),Zhenwei ZHANG2,Chenyu LI2,Cunlin ZHANG2
1. Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
2. Department of Physics, Capital Normal University, Beijing 100048, China
Download: PDF(229 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Particles of aerodynamic diameter≤2.5 μm (PM2.5) caused extremely severe and persistent haze pollution is of concern in many cities. In this study, samples of PM2.5 were collected from atmosphere environment of Beijing and Shanxi Province, and analyzed using terahertz (THz) radiation. The transmission spectrum of PM2.5 in Shanxi Province had two distinct absorption peaks at 6.0 and 6.7 THz, and the curve was increasing on the whole. However, the transmission spectrum of PM2.5 in Beijing had obviously different variation tendency and the absorption peak was studied by monitoring PM2.5 masses in conjunction with two-dimensional correlation spectroscopy (2DCOS). By comparing the pollutant species and concentrations of Shanxi Province and Beijing over the time of collecting samples, the concentrations of sulfate and ammonium were similar, which contributed to emerge absorption bands in the same position. While the concentrations of organic matter (OM), nitrate, chloride and elemental carbon (EC) were different. Furthermore, dust and some other inorganic ion are unique to Shanxi province, which lead to different variation tendency of the transmission spectrum of PM2.5. These results will be of importance for environmental monitoring and for controlling PM emissions. According to this research, optical techniques, and especially spectral methods, should be considered for PM2.5 monitoring.

Keywords PM2.5      terahertz      two dimensional correlation spectroscopy (2DCOS)     
Corresponding Authors: Honglei ZHAN,Kun ZHAO   
Just Accepted Date: 14 September 2016   Online First Date: 17 October 2016    Issue Date: 29 November 2016
 Cite this article:   
Ning LI,Honglei ZHAN,Kun ZHAO, et al. Characterizing PM2.5 in Beijing and Shanxi Province using terahertz radiation[J]. Front. Optoelectron., 2016, 9(4): 544-548.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-016-0608-1
http://journal.hep.com.cn/foe/EN/Y2016/V9/I4/544
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ning LI
Honglei ZHAN
Kun ZHAO
Zhenwei ZHANG
Chenyu LI
Cunlin ZHANG
Fig.1  Frequency-dependent spectra of PM2.5 from Beijing as well as Shanxi and reference (blank filters)
Fig.2  Frequency dependence of the absorbance spectra of the PM2.5 samples collected in the atmospheric environment from Beijing and Shanxi, respectively. The mass of PM2.5 collected from Beijing ranged from 0.4 to 2.5 mg. And the mass of PM2.5 collected from Shanxi ranged from 0.6 to 1.0 mg
Fig.3  Synchronous 2-D correlation plot over the frequency range from 4.0 to 7.5 THz. The numbers represent the coordinates of the peaks in synchronous data. Positive correlation is indicated that the absorption increased with PM2.5 mass over the entire frequency (4.0–7.5 THz)
Fig.4  Asynchronous 2-D correlation plot over the frequency range from 4.0 to 7.5 THz. The numbers represent the horizontal ordinates of the peaks in asynchronous data. Cross peaks develop only if the intensity varies out of phase with each other for some Fourier frequency components of signal fluctuations
1 Huang R J, Zhang Y, Bozzetti C, Ho K F, Cao J J, Han Y, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, El Haddad I, Prévôt A S. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514(7521): 218–222
pmid: 25231863
2 (in Chinese), <Date>accessed on 20 December 2012</Date>
3 Yao L, Yang L, Yuan Q, Yan C, Dong C, Meng C, Sui X, Yang F, Lu Y, Wang W. Sources apportionment of PM2.5 in a background site in the North China Plain. Science of the Total Environment, 2016, 541: 590–598
doi: 10.1016/j.scitotenv.2015.09.123 pmid: 26433327
4 Zhou X, Cao Z, Ma Y, Wang L, Wu R, Wang W. Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: potential implications for the revised particulate standard. Chemosphere, 2016, 144: 518–526
doi: 10.1016/j.chemosphere.2015.09.003 pmid: 26397469
5 Ferm M, Sjöberg K. Concentrations and emission factors for PM2.5 and PM10 from road traffic in Sweden. Atmospheric Environment, 2015, 119: 211–219
doi: 10.1016/j.atmosenv.2015.08.037
6 Han S, Youn J S, Jung Y W. Characterization of PM10 and PM2.5 source profiles for resuspended road dust collected using mobile sampling methodology. Atmospheric Environment, 2011, 45(20): 3343–3351
doi: 10.1016/j.atmosenv.2011.04.015
7 Liu J, Zhang X. Terahertz radiation-enhanced-emission-of-fluorescence. Frontiers of Optoelectronics, 2014, 7(2): 156–198
doi: 10.1007/s12200-014-0396-4
8 Su T, Yu B, Han P, Zhao G, Gong C. Characterization of spectra of lignin from midribs of tobacco at THz frequencies. Frontiers of Optoelectronics in China, 2009, 2(3): 244–247
doi: 10.1007/s12200-009-0052-6
9 Feng X, Wu S, Zhao K, Wang W, Zhan H, Jiang C, Xiao L, Chen S. Pattern transitions of oil-water two-phase flow with low water content in rectangular horizontal pipes probed by terahertz spectrum. Optics Express, 2015, 23(24): A1693–A1699
doi: 10.1364/OE.23.0A1693 pmid: 26698815
10 Ge L N, Zhan H L, Leng W X, Zhao K, Xiao L Z. Optical characterization of the principal hydrocarbon components in natural gas using terahertz spectroscopy. Energy & Fuels, 2015, 29(3): 1622–1627
doi: 10.1021/ef5028235
11 Zhan H, Wu S, Bao R, Zhao K, Xiao L, Ge L, Shi H. Water adsorption dynamics in active carbon probed by terahertz spectroscopy. RSC Advances, 2015, 5: 14389–14392
12 Zhan H, Wu S, Bao R, Ge L, Zhao K. Qualitative identification of crude oils from different oil fields using terahertz time-domain spectroscopy. Fuel, 2015, 143: 189–193
doi: 10.1016/j.fuel.2014.11.047
13 Zhan H, Li Q, Zhao K, Zhang L, Zhang Z, Zhang C, Xiao L. Evaluating PM2.5 at a construction site using terahertz radiation. IEEE Transactions on Terahertz Science and Technology, 2015, 5(6): 1028–1034
14 Li Q, Zhao K, Zhang L, Liang C, Zhang Z, Zhang C, Han D. Probing PM2.5 with terahertz wave. Science China Physics, Mechanics & Astronomy, 2014, 57(12): 2354–2356
doi: 10.1007/s11433-014-5569-z
15 Yang Y, Harsha S S, Shutler A J, Grischkowsky D R. Identification of genistein and biochanin A by THz (far-infrared) vibrational spectra. Journal of Pharmaceutical and Biomedical Analysis, 2012, 62: 177–181
doi: 10.1016/j.jpba.2011.12.013 pmid: 5552244730
16 Meng T, Du R, Hou Z, Yang J, Zhao G. THz spectra-based SVM prediction model for Yungang Grottoes samples. Journal of Archaeological Science, 2015, 55: 280–285
doi: 10.1016/j.jas.2015.01.012
17 Chen Z, Jiang Y, Jiang L, Ma H. Terahertz absorption spectra and potential energy distribution of liquid crystals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 153: 741–745
doi: 10.1016/j.saa.2015.09.024 pmid: 26476072
18 Hu M, Mu K, Zhang C, Gu H, Ding Z. Broadband THz pulse emission and transmission properties of nanostructured Pt thin films. Physica B, Condensed Matter, 2015, 474: 64–69
doi: 10.1016/j.physb.2015.05.013
19 Kansiz M, Domínguez-Vidal A, McNaughton D, Lendl B. Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallisation of polyhydroxyalkanoates (PHAs). Analytical and Bioanalytical Chemistry, 2007, 388(5-6): 1207–1213
doi: 10.1007/s00216-007-1337-5 pmid: 17530232
20 Burnett A D, Fan W, Upadhya P C, Cunningham J E, Hargreaves M D, Munshi T, Edwards H G M, Linfield E H, Davies A G. Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis. Analyst, 2009, 134(8): 1658–1668
doi: 10.1039/b817839a
21 Isaksson T. Methods to extract exclusively linear relationships in generalized two-dimensional correlation spectroscopy (2DCOS). Vibrational Spectroscopy, 2004, 36(2): 251–259
doi: 10.1016/j.vibspec.2003.11.015
22 Meng Z Y, Jiang X M, Yan P, Lin W L, Zhang H D, Wang Y. Characteristics and sources of PM2.5 and carbonaceous species during winter in Taiyuan, China. Atmospheric Environment, 2007, 41(32): 6901–6908
doi: 10.1016/j.atmosenv.2007.07.049
Related articles from Frontiers Journals
[1] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[2] Qian LI,Honglei ZHAN,Fangli QIN,Wujun JIN,Honglan LIU,Kun ZHAO. Detecting NO--3 concentration in nitrate solutions using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2015, 8(1): 62-67.
[3] J. Bianca JACKSON,Julien LABAUNE,Rozenn BAILLEUL-LESUER,Laura D'ALESSANDRO,Alison WHYTE,John W. BOWEN,Michel MENU,Gerard MOUROU. Terahertz pulse imaging in archaeology[J]. Front. Optoelectron., 2015, 8(1): 81-92.
[4] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
[5] Mikhail ESAULKOV,Olga KOSAREVA,Vladimir MAKAROV,Nikolay PANOV,Alexander SHKURINOV. Simultaneous generation of nonlinear optical harmonics and terahertz radiation in air: polarization discrimination of various nonlinear contributions[J]. Front. Optoelectron., 2015, 8(1): 73-80.
[6] Xiaoling ZHANG,Jianqiang GU,Jiaguang HAN,Weili ZHANG. Tailoring electromagnetic responses in terahertz superconducting metamaterials[J]. Front. Optoelectron., 2015, 8(1): 44-56.
[7] Dongwei WU,Jianjun LIU,Hao HAN,Zhanghua HAN,Zhi HONG. A high Q terahertz asymmetrically coupled resonator and its sensing performance[J]. Front. Optoelectron., 2015, 8(1): 68-72.
[8] Honglei ZHAN,Fangli QIN,Wujun JIN,Li’na GE,Honglan LIU,Kun ZHAO. Quantitative determination of n-heptane and n-octane using terahertz time-domain spectroscopy with chemometrics methods[J]. Front. Optoelectron., 2015, 8(1): 57-61.
[9] Qi JIN,Jinsong LIU,Kejia WANG,Zhengang YANG,Shenglie WANG,Kefei YE. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique[J]. Front. Optoelectron., 2015, 8(1): 104-109.
[10] Tianyi WANG,Zhengang YANG,Si ZOU,Kejia WANG,Shenglie WANG,Jinsong LIU. Time behavior of field screening effects in small-size GaAs photoconductive terahertz antenna[J]. Front. Optoelectron., 2015, 8(1): 98-103.
[11] Jingle LIU,Xi-Cheng ZHANG. Terahertz radiation-enhanced-emission-of-fluorescence[J]. Front. Optoelectron., 2014, 7(2): 156-198.
[12] Xiaofei LU,Xi-Cheng ZHANG. Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics[J]. Front. Optoelectron., 2014, 7(2): 121-155.
[13] Benjamin CLOUGH,Xi-Cheng ZHANG. Toward remote sensing with broadband terahertz waves[J]. Front. Optoelectron., 2014, 7(2): 199-219.
[14] I-Chen HO,Xi-Cheng ZHANG. Application of broadband terahertz spectroscopy in semiconductor nonlinear dynamics[J]. Front. Optoelectron., 2014, 7(2): 220-242.
[15] Yuting W. CHEN,Xi-Cheng ZHANG. Anti-reflection implementations for terahertz waves[J]. Front. Optoelectron., 2014, 7(2): 243-262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed