Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (4) : 616-620     DOI: 10.1007/s12200-015-0530-y
Novel frequency shift keying modulation based on fiber Bragg gratings and intensity modulators
Liu YANG,Fengguang LUO()
National Engineering Laboratory for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(327 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

This paper proposed and investigated a novel frequency shift keying (FSK) modulation based on two fiber Bragg gratings (FBGs) and two intensity modulators. Then the transmission of 10 Gbit/s FSK signal after a 50 km single mode fiber (SMF) was studied in this paper. The power penalty at the bit error rate (BER) of 10−9 was below 0.1 dB. The FSK modulation system can be applied to optical transmission system

Keywords fiber Bragg grating (FBG)      frequency shift keying (FSK)      modulation mode      intensity modulator     
Corresponding Authors: Fengguang LUO   
Just Accepted Date: 22 October 2015   Online First Date: 20 November 2015    Issue Date: 29 November 2016
 Cite this article:   
Liu YANG,Fengguang LUO. Novel frequency shift keying modulation based on fiber Bragg gratings and intensity modulators[J]. Front. Optoelectron., 2016, 9(4): 616-620.
E-mail this article
E-mail Alert
Articles by authors
Fengguang LUO
Fig.1  Architecture of FSK modulation system. CW: continuous wave, FBG: fiber Bragg grating, ATT: attenuator, EDFA: erbium doped fiber amplifier, DCF: dispersion compensation fiber. SMF: single mode fiber, FSK: frequency shift keying
Fig.2  Architecture of integrated modulator
Fig.3  (a)−(d) show the optical spectrum of the point A, B, C, D, respectively; (e) shows the eye-diagram of 10 Gb/s FSK signal at received unit; (f) shows the eye diagram of FSK signal without 10 km DCF
Fig.4  Frequency of sine wave versus the BER of FSK signal
Fig.5  BER of FSK signal versus the time delay of two optical waves
Fig.6  BER of FSK signal versus the different amplitude between the upper and lower paths
Fig.7  Received power versus the BER of FSK signal. BTB: back to back
1 Zhu Z, Hernandez V J, Jeon M Y, Cao J, Pan Z, Yoo S J B. RF photonics signal processing in subcarrier multiplexed optical-label switching communication systems. Journal of Lightwave Technology, 2003, 21(12): 3155–3166
doi: 10.1109/JLT.2003.822237
2 Martínez A, Manzanedo M, Puerto G, Pastor D, Ortega B, Capamany J, Banky T, Kovacs G, Berceli T, Popov M K, Fonjallaz P Y. Recent advances on optical label swapping techniques: an approach to the final results of IST-LABELS project. International Conference on Transparent optical networks, 2006, 3: 51–56
3 Zhang L, Yang J Y, Song M, Li Y, Zhang B, Beausoleil R G, Willner A E. Microring-based modulation and demodulation of DPSK signal. Optics Express, 2007, 15(18): 11564–11569
doi: 10.1364/OE.15.011564 pmid: 19547514
4 He Z, Hu F, Ye F, Huang B, Li W, Chi N, Huang D, Tao Z, Cao Z, Cheng W, Wang Z, Zhou Y, Lai T, Zeng J. All-optical ASK label swapping on CSRZ-FSK payload in optical packet networks. In: Proceedings of International Conference on Communication Software and Network, 2011, 168–170
5 Li M, Chi N, Hong W, Zhang X, Li W, Huang D. Investigation of high-speed optical FSK generation scheme based on carrier suppression and phase modulation. Optics Communications, 2009, 282(4): 508–517
doi: 10.1016/j.optcom.2008.10.064
6 He Z, Tao Z, Hu F, Chi N, Huang D. 40 Gb/s CSRZFSK signal generation and transmission labeled with ASK in optical packet networks. Optik (Stuttgart), 2013, 124(6): 529–532
doi: 10.1016/j.ijleo.2011.12.019
7 Kawanishi T, Higuma K, Fujita T, Ichikawa J, Shinada S, Sakamoto T, Izutsu M. Optical FSK/IM signal generation using an integrated optical FSK modulator. IEICE Electronics Express, 2004, 1(3): 69–72
doi: 10.1587/elex.1.69
8 Kawanishi T, Higuma K, Fujita T, Ichikawa J, Sakamoto T, Shinada S, Izutsu M. High-speed optical FSK modulator for optical packet labeling. Journal of Lightwave Technology, 2005, 23(1): 87–94
doi: 10.1109/JLT.2004.840353
9 Kawanishi T, Higuma K, Fujita T, Ichikawa J, Sakamoto T, Shinada S, Izutsu M. LiNbO3 high-speed optical FSK modulator. Electronics Letters, 2004, 40(11): 691–692
doi: 10.1049/el:20040444
10 Zhang J, Chi N, Holm-Nielsen P V, Peucheret C, Jeppesen P. An optical FSK transmitter based on an integrated DBF laser-EA modulator and its application in optical labeling. IEEE Photonics Technology Letters, 2003, 15(7): 984–986
doi: 10.1109/LPT.2003.813415
11 Shao Y, Chi N, Hou C, Fang W, Zhang J, Huang B, Li X, Zou S, Liu X, Zheng X, Zhang N, Fang Y, Zhu J, Tao L, Huang D. A novel return-to-zero FSK format for 40-Gb/s transmission system applications. Journal of Lightwave Technology, 2010, 28(12): 1770–1782
doi: 10.1109/JLT.2010.2048413
12 Yu Y, Mulvihill G, O’Duill S, O’Dowd R. Performance implications of wide-band lasers for FSK modulation labeling scheme. IEEE Photonics Technology Letters, 2004, 16(1): 39–41
doi: 10.1109/LPT.2003.820460
Related articles from Frontiers Journals
[1] Lubna NADEEM, Rameez ASIF. FSK signal generation with wavelength reuse capability in 8 Gbit/s radio over fiber systems[J]. Front Optoelec, 2013, 6(3): 303-311.
[2] Yuewen HAN, Cheng CHENG. An optimized distributed fiber Bragg grating sensing system based on optical frequency domain reflectometry[J]. Front Optoelec, 2012, 5(3): 345-350.
[3] Yu JI, Yan LI, Wei LI, Xiaobing HONG, Hongxiang GUO, Yong ZUO, Kun XU, Jian WU, Jintong LIN. Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators[J]. Front Optoelec Chin, 2011, 4(3): 292-297.
[4] Jinjie CHEN, Bo LIU, Hao ZHANG. Review of fiber Bragg grating sensor technology[J]. Front Optoelec Chin, 2011, 4(2): 204-212.
[5] Xin LIU, Deming LIU, Wei WU, Zheng QIN. A modified dual-wavelength matrix calculation method[J]. Front Optoelec Chin, 2009, 2(3): 285-288.
[6] Yong ZHAO, Huawei ZHAO, Jian YANG. A novel weight measurement method based on birefringence in fiber Bragg gratings[J]. Front Optoelec Chin, 2008, 1(3-4): 226-230.
[7] Guoli CAI, Wei JIAN. Temperature sensing capacity of fiber Bragg grating at liquid nitrogen temperature[J]. Front Optoelec Chin, 2008, 1(3-4): 223-225.
[8] GUO Tuan, ZHAO Qida, LIU Lihui, HUANG Guiling, XUE Lifang, LI Guoyu, LIU Bo, ZHANG Weigang, KAI Guiyun, YUAN Shuzhong, DONG Xiaoyi. Light intensity-referred and temperature-insensitive fiber Bragg grating dynamic pressure sensor[J]. Front. Optoelectron., 2008, 1(1-2): 113-118.
Full text