Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2015, Vol. 8 Issue (3) : 241-251     DOI: 10.1007/s12200-015-0524-9
REVIEW ARTICLE |
Recent progress in colloidal quantum dot photovoltaics
Xihua WANG()
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
Download: PDF(1702 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The development of photovoltaic devices, solar cells, plays a key role in renewable energy sources. Semiconductor colloidal quantum dots (CQDs), including lead chacolgenide CQDs that have tunable electronic bandgaps from infrared to visible, serve as good candidates to harvest the broad spectrum of sunlight. CQDs can be processed from solution, allowing them to be deposited in a roll-to-roll printing process compatible with low-cost fabrication of large area solar panels. Enhanced multi-exciton generation process in CQD, compared with bulk semiconductors, enables the potential of exceeding Shockley-Queisser limit in CQD photovoltaics. For these advantages, CQDs photovoltaics attract great attention in academics, and extensive research works accelerate the development of CQD based solar cells. The record efficiency of CQD solar cells increased from 5.1% in 2011 to 9.9% in 2015. The improvement relies on optimized material processing, device architecture and various efforts to improve carrier collection efficiency. In this review, we have summarized the progress of CQD photovoltaics in year 2012 and after. Here we focused on the theoretical and experimental works that improve the understanding of the device physics in CQD solar cells, which may guide the development of CQD photovoltaics within the research community.

Keywords colloidal quantum dot (CQD)      solar cell      photovoltaics      carrier extraction      light trapping     
Corresponding Authors: Xihua WANG   
Just Accepted Date: 23 July 2015   Online First Date: 24 August 2015    Issue Date: 18 September 2015
 Cite this article:   
Xihua WANG. Recent progress in colloidal quantum dot photovoltaics[J]. Front. Optoelectron., 2015, 8(3): 241-251.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-015-0524-9
http://journal.hep.com.cn/foe/EN/Y2015/V8/I3/241
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xihua WANG
Fig.1  Performance of CQD photovoltaics as a function of passivation (reprinted from Ref. [15])
Fig.2  Model and charge transport in CQD photovotlaics (reprinted from Ref. [21])
Fig.3  Inverted quantum junction devices leverage process-compatible n- and p-type CQD solids (reprinted from Ref. [27])
Fig.4  Photovoltaic device architectures and performance (reprinted from Ref. [30])
Fig.5  Fabricated nanostructured CQD solar cells (reprinted from Ref. [36])
Fig.6  Plasmonic-excitonic solar cell device design and characterization (reprinted from Ref. [41])
Fig.7  Illustrating the increased-light-path advantage of pyramid-patterned electrodes (reprinted from Ref. [44])
Fig.8  n-type CQD ink based solar cells (reprinted from Ref. [46])
Fig.9  Illustration of spray-coating technique and finished CQD devices (reprinted from Ref. [47])
1 Rossetti R, Nakahara S, Brus L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. Journal of Chemical Physics, 1983, 79(2): 1086–1088
doi: 10.1063/1.445834
2 Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715
doi: 10.1021/ja00072a025
3 Shirasaki Y, Supran G J, Bawendi M G, Bulovic V. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2013, 7(1): 13–23
doi: 10.1038/nphoton.2012.328
4 Konstantatos G, Sargent E H. Colloidal quantum dot photodetectors. Infrared Physics & Technology, 2011, 54(3): 278–282
doi: 10.1016/j.infrared.2010.12.029
5 Kim J Y, Voznyy O, Zhitomirsky D, Sargent E H. 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Advanced Materials, 2013, 25(36): 4986–5010
doi: 10.1002/adma.201301947 pmid: 24002864
6 Kim M R, Ma D. Quantum-dot-based solar cells: recent advances, strategies, and challenges. Journal of Physical Chemistry Letters, 2015, 6(1): 85–99
doi: 10.1021/jz502227h
7 Kramer I J, Sargent E H. The architecture of colloidal quantum dot solar cells: materials to devices. Chemical Reviews, 2014, 114(1): 863–882
doi: 10.1021/cr400299t pmid: 24053639
8 Lan X, Masala S, Sargent E H. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nature Materials, 2014, 13(3): 233–240
doi: 10.1038/nmat3816 pmid: 24553652
9 Goetzberger A, Knobloch J, Vo? B. Crystalline Silicon Solar Cells. 1st ed. New York: John Wiley & Sons Ltd, 1998, 49–86
10 Voznyy O, Thon S M, Ip A H, Sargent E H. Dynamic trap formation and elimination in colloidal quantum dots. Journal of Physical Chemistry Letters, 2013, 4(6): 987–992
doi: 10.1021/jz400125r
11 Sze S M, Ng K K. Physics of Semiconductor Devices. 3rd ed. New York: John Wiley & Sons Ltd, 2007, 7–72
12 Ocier C R, Whitham K, Hanrath T, Robinson R D. nanocrystal field-effect transistors. Journal of Physical Chemistry C, 2014, 118(7): 3377–3385
doi: 10.1021/jp406369a
13 Liu Y, Tolentino J, Gibbs M, Ihly R, Perkins C L, Liu Y, Crawford N, Hemminger J C, Law M. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2·V-1·s-1. Nano Letters, 2013, 13(4): 1578–1587
pmid: 23452235
14 Otto T, Miller C, Tolentino J, Liu Y, Law M, Yu D. Gate-dependent carrier diffusion length in lead selenide quantum dot field-effect transistors. Nano Letters, 2013, 13(8): 3463–3469
doi: 10.1021/nl401698z pmid: 23802707
15 Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A, Sargent E H. Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology, 2012, 7(9): 577–582
doi: 10.1038/nnano.2012.127 pmid: 22842552
16 Ning Z, Ren Y, Hoogland S, Voznyy O, Levina L, Stadler P, Lan X, Zhitomirsky D, Sargent E H. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Advanced Materials, 2012, 24(47): 6295–6299
doi: 10.1002/adma.201202942 pmid: 22968838
17 Jeong K S, Tang J, Liu H, Kim J, Schaefer A W, Kemp K, Levina L, Wang X, Hoogland S, Debnath R, Brzozowski L, Sargent E H, Asbury J B. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano, 2012, 6(1): 89–99
doi: 10.1021/nn2039164 pmid: 22168594
18 Carey G H, Levina L, Comin R, Voznyy O, Sargent E H. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Advanced Materials, 2015, 27(21): 3325–3330
doi: 10.1002/adma.201405782 pmid: 25899173
19 Zhitomirsky D, Voznyy O, Hoogland S, Sargent E H. Measuring charge carrier diffusion in coupled colloidal quantum dot solids. ACS Nano, 2013, 7(6): 5282–5290
doi: 10.1021/nn402197a pmid: 23701285
20 Kemp K W, Wong C T O, Hoogland S H, Sargent E H. Photocurrent extraction efficiency in colloidal quantum dot photovoltaics. Applied Physics Letters, 2013, 103(21): 211101
doi: 10.1063/1.4831982
21 Zhitomirsky D, Voznyy O, Levina L, Hoogland S, Kemp K W, Ip A H, Thon S M, Sargent E H. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nature Communications, 2014, 5: 3803
doi: 10.1038/ncomms4803 pmid: 24801435
22 Carey G H, Kramer I J, Kanjanaboos P, Moreno-Bautista G, Voznyy O, Rollny L, Tang J A, Hoogland S, Sargent E H. Electronically active impurities in colloidal quantum dot solids. ACS Nano, 2014, 8(11): 11763–11769
doi: 10.1021/nn505343e pmid: 25376698
23 Tang J, Liu H, Zhitomirsky D, Hoogland S, Wang X, Furukawa M, Levina L, Sargent E H. Quantum junction solar cells. Nano Letters, 2012, 12(9): 4889–4894
doi: 10.1021/nl302436r pmid: 22881834
24 Kemp K W, Labelle A J, Thon S M, Ip A H, Kramer I J, Hoogland S, Sargent E H. Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Advanced Energy Materials, 2013, 3(7): 917–922
doi: 10.1002/aenm.201201083
25 Voznyy O, Zhitomirsky D, Stadler P, Ning Z, Hoogland S, Sargent E H. A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano, 2012, 6(9): 8448–8455
doi: 10.1021/nn303364d pmid: 22928602
26 Zhitomirsky D, Furukawa M, Tang J, Stadler P, Hoogland S, Voznyy O, Liu H, Sargent E H. N-type colloidal-quantum-dot solids for photovoltaics. Advanced Materials, 2012, 24(46): 6181–6185
doi: 10.1002/adma.201202825 pmid: 22968808
27 Ning Z, Voznyy O, Pan J, Hoogland S, Adinolfi V, Xu J, Li M, Kirmani A R, Sun J P, Minor J, Kemp K W, Dong H, Rollny L, Labelle A, Carey G, Sutherland B, Hill I, Amassian A, Liu H, Tang J, Bakr O M, Sargent E H. Air-stable n-type colloidal quantum dot solids. Nature Materials, 2014, 13(8): 822–828
doi: 10.1038/nmat4007 pmid: 24907929
28 Stavrinadis A, Rath A K, de Arquer F P, Diedenhofen S L, Magén C, Martinez L, So D, Konstantatos G. Heterovalent cation substitutional doping for quantum dot homojunction solar cells. Nature Communications, 2013, 4: 2981
doi: 10.1038/ncomms3981 pmid: 24346430
29 Ko D K, Brown P R, Bawendi M G, Bulovi? V. p-i-n Heterojunction solar cells with a colloidal quantum-dot absorber layer. Advanced Materials, 2014, 26(28): 4845–4850
doi: 10.1002/adma.201401250 pmid: 24862978
30 Chuang C H, Brown P R, Bulovi? V, Bawendi M G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Materials, 2014, 13(8): 796–801
doi: 10.1038/nmat3984 pmid: 24859641
31 Ning Z, Zhitomirsky D, Adinolfi V, Sutherland B, Xu J, Voznyy O, Maraghechi P, Lan X, Hoogland S, Ren Y, Sargent E H. Graded doping for enhanced colloidal quantum dot photovoltaics. Advanced Materials, 2013, 25(12): 1719–1723
doi: 10.1002/adma.201204502 pmid: 23381974
32 Yuan M, Zhitomirsky D, Adinolfi V, Voznyy O, Kemp K W, Ning Z, Lan X, Xu J, Kim J Y, Dong H, Sargent E H. Doping control via molecularly engineered surface ligand coordination. Advanced Materials, 2013, 25(39): 5586–5592
doi: 10.1002/adma201302802 pmid: 23913360
33 Brongersma M L, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nature Materials, 2014, 13(5): 451–460
doi: 10.1038/nmat3921 pmid: 24751773
34 Kramer I J, Zhitomirsky D, Bass J D, Rice P M, Topuria T, Krupp L, Thon S M, Ip A H, Debnath R, Kim H C, Sargent E H. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Advanced Materials, 2012, 24(17): 2315–2319
doi: 10.1002/adma.201104832 pmid: 22467240
35 Lan X, Bai J, Masala S, Thon S M, Ren Y, Kramer I J, Hoogland S, Simchi A, Koleilat G I, Paz-Soldan D, Ning Z, Labelle A J, Kim J Y, Jabbour G, Sargent E H. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Advanced Materials, 2013, 25(12): 1769–1773
doi: 10.1002/adma.201203759 pmid: 23293006
36 Adachi M M, Labelle A J, Thon S M, Lan X, Hoogland S, Sargent E H. Broadband solar absorption enhancement via periodic nanostructuring of electrodes. Scientific Reports, 2013, 3: 2928
doi: 10.1038/srep02928 pmid: 24121519
37 Mahpeykar S M, Xiong Q, Wang X. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes. Optics Express, 2014, 22(S6 Suppl 6): A1576–A1588
38 Mihi A, Bernechea M, Kufer D, Konstantatos G. Coupling resonant modes of embedded dielectric microspheres in solution-processed solar cells. Advanced Optical Materials, 2013, 1(2): 139–143
39 Kim S, Kim J K, Gao J, Song J H, An H J, You T S, Lee T S, Jeong J R, Lee E S, Jeong J H, Beard M C, Jeong S. Lead sulfide nanocrystal quantum dot solar cells with trenched ZnO fabricated via nanoimprinting. ACS Applied Materials & Interfaces, 2013, 5(9): 3803–3808
doi: 10.1021/am400443w pmid: 23581816
40 Mihi A, Beck F J, Lasanta T, Rath A K, Konstantatos G. Imprinted electrodes for enhanced light trapping in solution processed solar cells. Advanced Materials, 2014, 26(3): 443–448
doi: 10.1002/adma.201303674 pmid: 24173655
41 Paz-Soldan D, Lee A, Thon S M, Adachi M M, Dong H, Maraghechi P, Yuan M, Labelle A J, Hoogland S, Liu K, Kumacheva E, Sargent E H. Jointly tuned plasmonic-excitonic photovoltaics using nanoshells. Nano Letters, 2013, 13(4): 1502–1508
pmid: 23444829
42 Beck F J, Stavrinadis A, Diedenhofen S L, Lasanta T, Konstantatos G. Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics. ACS Photonics, 2014, 1(11): 1197–1205
doi: 10.1021/ph5002704
43 Koleilat G I, Kramer I J, Wong C T O, Thon S M, Labelle A J, Hoogland S, Sargent E H. Folded-light-path colloidal quantum dot solar cells. Scientific Reports, 2013, 3: 2166
doi: 10.1038/srep02166 pmid: 23835564
44 Labelle A J, Thon S M, Masala S, Adachi M M, Dong H, Farahani M, Ip A H, Fratalocchi A, Sargent E H. Colloidal quantum dot solar cells exploiting hierarchical structuring. Nano Letters, 2015, 15(2): 1101–1108
doi: 10.1021/nl504086v pmid: 25547345
45 Fischer A, Rollny L, Pan J, Carey G H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Kim J Y, Bakr O M, Sargent E H. Directly deposited quantum dot solids using a colloidally stable nanoparticle ink. Advanced Materials, 2013, 25(40): 5742–5749
doi: 10.1002/adma.201302147 pmid: 23934957
46 Ning Z, Dong H, Zhang Q, Voznyy O, Sargent E H. Solar cells based on inks of n-type colloidal quantum dots. ACS Nano, 2014, 8(10): 10321–10327
doi: 10.1021/nn503569p pmid: 25225786
47 Kramer I J, Moreno-Bautista G, Minor J C, Kopilovic D, Sargent E H. Colloidal quantum dot solar cells on curved and flexible substrates. Applied Physics Letters, 2014, 105(16): 163902
doi: 10.1063/1.4898635
48 Kramer I J, Minor J C, Moreno-Bautista G, Rollny L, Kanjanaboos P, Kopilovic D, Thon S M, Carey G H, Chou K W, Zhitomirsky D, Amassian A, Sargent E H. Efficient spray-coated colloidal quantum dot solar cells. Advanced Materials, 2015, 27(1): 116–121
doi: 10.1002/adma.201403281 pmid: 25382752
49 http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
Related articles from Frontiers Journals
[1] Zhuo DENG,Jiqiang NING,Rongxin WANG,Zhicheng SU,Shijie XU,Zheng XING,Shulong LU,Jianrong DONG,Hui YANG. Influence of temperature and reverse bias on photocurrent spectrum and supra-bandgap spectral response of monolithic GaInP/GaAs double-junction solar cell[J]. Front. Optoelectron., 2016, 9(2): 306-311.
[2] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[3] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[4] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[5] Xiaoli ZHENG,Haining CHEN,Zhanhua WEI,Yinglong YANG,He LIN,Shihe YANG. High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes[J]. Front. Optoelectron., 2016, 9(1): 71-80.
[6] Heng LI,Wei JING,Dapeng YU,Qing ZHAO. Micro-scale hierarchical photoanode for quantum-dot-sensitized solar cells based on TiO2 nanowires[J]. Front. Optoelectron., 2016, 9(1): 53-59.
[7] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[8] Asma OUANOUGHI,Abdesselam HOCINI,Djamel KHEDROUCHE. Enhanced absorption of solar cell made of photonic crystal by geometrical design[J]. Front. Optoelectron., 2016, 9(1): 93-98.
[9] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[10] Cheng ZHANG,Jie ZHONG,Jiang TANG. Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents[J]. Front. Optoelectron., 2015, 8(3): 252-268.
[11] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[12] Kunpeng MA, Xiangbin ZENG, Qingsong LEI, Junming XUE, Yanzeng WANG, Chenguang ZHAO. Texturization and rounded process of silicon wafers for heterojunction with intrinsic thin-layer solar cells[J]. Front Optoelec, 2014, 7(1): 46-52.
[13] Jun HAN, Ying ZHOU, Yang Tian, Ziheng HUANG, Xiaohua WANG, Jie ZHONG, Zhe XIA, Bo YANG, Haisheng SONG, Jiang TANG. Hydrazine processed Cu2SnS3 thin film and their application for photovoltaic devices[J]. Front Optoelec, 2014, 7(1): 37-45.
[14] Debin NI, Dong YANG, Shuying MA, Guoli TU, Jian ZHANG. Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics[J]. Front Optoelec, 2013, 6(4): 418-428.
[15] Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed