Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2013, Vol. 6 Issue (2) : 228-233     DOI: 10.1007/s12200-013-0324-z
Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness
Yun-Qing CAO, Xin XU, Shu-Xin LI, Wei LI, Jun XU(), Kunji CHEN
School of Electronic Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Download: PDF(363 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Si quantum dots (Si QDs)/SiC multilayers were fabricated by annealing hydrogenated amorphous Si/SiC stacked structures prepared in plasma enhanced chemical vapor deposition (PECVD) system. The microstructures were examined by transmission electron microscopy (TEM) and Raman spectroscopy, and results demonstrate the formation of Si QDs. Moreover, p-i-n devices containing Si QDs/SiC multilayers were fabricated, and their photovoltaic property was investigated. It was found that these devices show the good spectral response in a wide wavelength range (400–1200 nm). And it was also observed that by reducing the thickness of SiC layer from 4 to 2 nm, the external quantum efficiency was obviously enhanced and the short circuit current density (Jsc) was increased from 17.5 to 28.3 mA/cm2, indicating the collection efficiency of photo-generated carriers was improved due to the reduced SiC barriers.

Keywords Si quantum dots (Si QDs)      SiC multilayer      solar cells      transmission electron microscopy (TEM)      Raman spectroscopy     
Corresponding Authors: XU Jun,   
Issue Date: 05 June 2013
 Cite this article:   
Yun-Qing CAO,Xin XU,Shu-Xin LI, et al. Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness[J]. Front Optoelec, 2013, 6(2): 228-233.
E-mail this article
E-mail Alert
Articles by authors
Yun-Qing CAO
Xin XU
Shu-Xin LI
Wei LI
Jun XU
Kunji CHEN
Fig.1  Schematic diagram of solar cell containing Si QDs/SiC MLs
Fig.2  TEM micrographs of as-deposited a-Si (4 nm)/a-SiC (4 nm) multilayers
Fig.3  (a) Raman spectra of Si (4 nm)/SiC (2 nm) MLs before and after annealing; (b) Raman spectra of Si (4 nm)/SiC (4 nm) MLs before and after annealing; (c) TEM micrographs of formed Si QDs after 1000°C annealing
Fig.4  Optical absorptance of (a) Si (4 nm)/SiC (4 nm) MLs after 900°C and 1000°C annealing; (b) Si (4 nm)/SiC (2 nm) MLs after 1000°C annealing
Fig.5  Dark characteristics of device containing 1000°C annealed Si QDs (4 nm)/SiC (4 nm) and Si QDs (4 nm)/SiC (2 nm) MLs. Inset is the ln (/)-1/ plot of curve
Fig.6  External quantum efficiency of solar cells containing 1000°C annealed Si QDs (4 nm) /SiC (4 nm) and Si QDs (4 nm)/SiC (2 nm) MLs. Inset is the measured illuminatedcharacteristics of those samples
1 Surana K, Lepage H, Lebrun J M, Doisneau B, Bellet D, Vandroux L, Le Carval G, Baudrit M, Thony P, Mur P. Film-thickness-dependent conduction in ordered Si quantum dot arrays. Nanotechnology , 2012, 23(10): 105401-105410
doi: 10.1088/0957-4484/23/10/105401 pmid:22348886
2 Kurokawa Y, Tomita S, Miyajima S, Yamada A, Konagai M. Photoluminescence from silicon quantum dots in Si quantum dots/amorphous SiC superlattice. Japanese Journal of Applied Physics , 2007, 46(35): L833-L835
doi: 10.1143/JJAP.46.L833
3 Baron T, Gentile P, Magnea N, Mur P. Single-electron charging effect in individual Si nanocrystals. Applied Physics Letters , 2001, 79(8): 1175-1177
doi: 10.1063/1.1392302
4 Conibeer G, Green M A, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y D, Puzzer T, Trupke T, Richards B, Shalav A, Lind K L. Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films , 2006, 26(511-512): 654-662
doi: 10.1016/j.tsf.2005.12.119
5 Perez-Wurfl I, Ma L, Lin D, Hao X, Green M A, Conibeer G. Silicon nanocrystals in an oxide matrix for thin film solar cells with 492 mV open circuit voltage. Solar Energy Materials and Solar Cells , 2012, 100: 65-68
doi: 10.1016/j.solmat.2011.02.029
6 Uchida G, Yamamoto K, Sato M, Kawashima Y, Nakahara K, Kamataki K, Itagaki N, Koga K, Shiratani M. Effect of nitridation of Si nanoparticles on the performance of quantum-dot sensitized solar cells. Japanese Journal of Applied Physics , 2012, 51(1): 01AD01-01AD01-5
doi: 10.1143/JJAP.51.01AD01
7 Conibeer G, Green M A, K?nig D, Perez-Wurfl I, Huang S J, Hao X J, Di D W, Shi L, Shrestha S, Puthen-Veetil B, So Y, Zhang B, Wan Z Y. Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport. Progress in Photovoltaics: Research and Applications , 2010, 7(19): 813-824
8 Creazzo T, Redding B, Marchena E, Murakowski J, Prather D W. Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices. Journal of Luminescence , 2010, 130(4): 631-636
doi: 10.1016/j.jlumin.2009.11.007
9 Cho E C, Park S W, Hao X J, Song D Y, Conibeer G, Park S C, Green M A. Silicon quantum dot/crystalline silicon solar cells. Nanotechnology , 2008, 19(24): 245201-245205
doi: 10.1088/0957-4484/19/24/245201 pmid:21825804
10 Pi X D, Zhang L, Yang D R. Enhanced the efficiency of multicrystalline silicon solar cells by the inkjet printing of silicon-quantum-dot ink. Journal of Physical Chemistry C , 2012, 116(40): 21240-21243
doi: 10.1021/jp307078g
11 Jiang C W, Green M A. Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. Journal of Applied Physics , 2006, 99(11): 114902-114908
doi: 10.1063/1.2203394
12 Rui Y J, Li S X, Xu J, Song C, Jiang X F, Li W, Chen K J, Wang Q M, Zuo Y H. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. Journal of Applied Physics , 2011, 110(6): 064322-064327
doi: 10.1063/1.3641989
13 Li S X, Rui Y J, Cao Y Q, Xu J, Chen K J. Annealing effect on optical and electronic properties of silicon rich amorphous silicon-carbide films. Front. Optoelectron , 2012, 5(1): 107-111
doi: 10.1007/s12200-012-0196-7
14 Tsu R, Gonzalez-Hernandez J, ChaoS S, Lee S C, TanakaK. Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si:F:H alloys. Applied Physics Letters , 1982, 40(6): 534-535
doi: 10.1063/1.93133
15 Zhou J, Chen G R, Liu Y, Xu J, Wang T, Wan N, Ma Z Y, Li W, Song C, Chen K J. Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures. Optics Express , 2009, 17(1): 156-162
doi: 10.1364/OE.17.000156 pmid:19129883
16 Rui Y J, Li S X, Xu J, Cao Y Q, Li W, Chen K J. Comparative study of electroluminescence from annealed amorphous SiC single layer and amorphous Si/SiC multilayers. Journal of Non-Crystalline Solids , 2012, 358(17): 2114-2117
doi: 10.1016/j.jnoncrysol.2012.01.054
17 Budiman M F, Hu W, Igarashi M, Tsukamoto R, Isoda T, Itoh K M, Yamashita I, Murayama A, Okada Y, Samukawa S. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure. Nanotechnology , 2012, 23(6): 065302-065307
doi: 10.1088/0957-4484/23/6/065302 pmid:22248504
18 Chiu P W, Roth S. Transition from direct tunneling to field emission in carbon nanotube intramolecular junctions. Applied Physics Letters , 2008, 92(4): 042107-3
doi: 10.1063/1.2838353
19 Wang Q. High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells. Philosophical Magazine , 2009, 89(28): 2587-2598
doi: 10.1080/14786430902919489
20 Taguchi M, Maruyama E, Tanaka M. Temperature dependence of amorphous/crystalline silicon heterojunction solar cells. Japanese Journal of Applied Physics , 2008, 47(2): 814-818
doi: 10.1143/JJAP.47.814
Related articles from Frontiers Journals
[1] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[2] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[3] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[4] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[5] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[6] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[7] Kunpeng MA, Xiangbin ZENG, Qingsong LEI, Junming XUE, Yanzeng WANG, Chenguang ZHAO. Texturization and rounded process of silicon wafers for heterojunction with intrinsic thin-layer solar cells[J]. Front Optoelec, 2014, 7(1): 46-52.
[8] Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
[9] Kun CAO, Mingkui WANG. Recent developments in sensitizers for mesoporous sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 373-385.
[10] Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN. Monolithic all-solid-state dye-sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 359-372.
[11] Dehua XIONG, Wei CHEN. Recent progress on tandem structured dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(4): 371-389.
[12] Li PENG, Jiang TANG, Mingqiang ZHU. Recent development in colloidal quantum dots photovoltaics[J]. Front Optoelec, 2012, 5(4): 358-370.
[13] Yanhua TONG, Feng CAO, Peisong TANG, Haifeng CHEN, Guoxiang PAN, Minhong XU. Controllable synthesis of quasi-spherelike ZnO hierarchical nanostructures and performance of their dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(2): 181-187.
[14] Chang-Qi MA. Conjugated dendritic oligothiophenes for solution-processed bulk heterojunction solar cells[J]. Front Optoelec Chin, 2011, 4(1): 12-23.
Full text