Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2013, Vol. 6 Issue (2) : 134-145     DOI: 10.1007/s12200-013-0319-9
REVIEW ARTICLE |
Recent advances of optical imaging in animal stroke model
Zhen WANG1,2()
1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(626 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Stroke is a major health concern and an intensive research subject due that it is the major cause of death and the leading cause of disability worldwide. The past three decades of clinical disappointments in treating stroke must compel us to rethink our strategy. New effective protocol for stroke could greatly benefit from the advances in optical imaging technologies. This review focuses on the latest advance of applications of three optical imaging techniques in animal model of stroke, such as photoacoustic (PA) imaging, laser speckle contrast imaging (LSCI) and two-photon microscopy (TPM). The potential roles of those techniques in the future of stroke management are also discussed.

Keywords optical imaging      photoacoustic (PA) imaging      laser speckle contrast imaging (LSCI)      two-photon microscopy (TPM)      animal model      stroke     
Corresponding Authors: WANG Zhen,Email:zhenwang@mail.hust.edu.cn   
Issue Date: 05 June 2013
 Cite this article:   
Zhen WANG. Recent advances of optical imaging in animal stroke model[J]. Front Optoelec, 2013, 6(2): 134-145.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-013-0319-9
http://journal.hep.com.cn/foe/EN/Y2013/V6/I2/134
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhen WANG
Fig.1  Comparison of spatial resolution, temporal resolution, and penetration depth among optical imaging techniques. Plot of the spatial and temporal resolutions of different optical techniques, with color-coded penetration depth is presented. Near-infrared spectroscopy (NIRS); diffuse correlation spectroscopy (DCS); optical intrinsic signal imaging (OISI); laser speckle contrast imaging (LSCI) and optical coherence tomography (OCT). This figure was reprinted from Ref. []
Fig.2  Longitudinal monitoring of ischemic stroke induced by transient middle cerebral artery occlusion (tMCAO) in the left parietal cortex. (a) Before tMCAO; (b) during tMCAO; (c) after tMCAO; (d) day 3; (e) day 7; (f) day 25. This figure was reprinted from Ref. []
Fig.3  Spatiotemporal evolution of the distribution of CBF in ischemic cortex by LSCI. After MCAO, the region with low blood perfusion (blue-highlight area) increased with time. And there were dynamic changes in the blood flow of collateral channels (CC). Some of them were persisted (CC1 and CC4); others disappeared with different duration (CC2 and CC3) (A, anterior; L, lateral). This figure was reprinted from Ref. []
Fig.4  Manipulation of blood flow in single-cortical vessels using auxiliary lasers. (a) Rose Bengal-mediated photothrombosis of a single penetrating arteriole on the pial surface. Occlusion was achieved after 1 min of irradiation with a green laser focused in the lumen of the target vessel (filled green circle in left panel). The thrombus formed by irradiation sits stably within the lumen surrounded by stagnant serum (open green circle in right panel); (b) photothrombosis of a single mouse penetrating arteriole through a PoRTS window. The CX(3)CR1 mouse line expresses GFP in microglia and monocytes. This figure was reprinted from Ref. []
Fig.5  Imaging of neuronal structure following targeted stroke. (a) Images from a Thy1-YFP mouse showing Texas red-dextranlabeled vasculature (red) and neuronal dendrites (green). The images are maximal intensity projections of the first 100 mm of the cortex before and 30 min after photoactivation of circulating Rose Bengal; (b and c) quantification of red blood cell (RBC) velocity and dendritic spine number for the animal shown in panel a; (d) dendritic structure was completely lost within 30 min of photothrombosis. Residual blood flow after stroke was zero and reperfusion did not occur. Apparent clotting and breakdown of capillaries were seen 30 min after photothrombosis []. This figure was reprinted from Ref. []
Fig.6  Relationship between synaptic circuit damage and local blood flow. Cartoon of a cross-section through the rodent cortex showing the stroke core (black) and penumbra (lighter shades of gray) [] after occlusion of the middle cerebral artery, a common experimental stroke model. The core has<20% of baseline blood flow and fails to regain its fine dendritic structure after reperfusion []. In the penumbra, blood flow increases moving toward the midline as tissues in this region are supplied by other artery systems that were not blocked during the stroke. Within the penumbra, some loss of dendrite structure will reverse when reperfusion occurs and this is where rewiring over longer time scales will occur to replace connectivity lost due to ischemia [–]. This figure was reprinted from Ref. []
1 Sims N R, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease , 2010, 1802(1): 80–91
doi: 10.1016/j.bbadis.2009.09.003
2 Brown D L, Boden-Albala B, Langa K M, Lisabeth L D, Fair M, Smith M A, Sacco R L, Morgenstern L B. Projected costs of ischemic stroke in the United States. Neurology , 2006, 67(8): 1390–1395
doi: 10.1212/01.wnl.0000237024.16438.20 pmid:16914694
3 Joshi S, Agarwal S. The proposed role of optical sensing in translational stroke research. Annals of the New York Academy of Sciences , 2010, 1199(1): 149–157
doi: 10.1111/j.1749-6632.2009.05381.x pmid:20633120
4 Li C, Wang L V. Photoacoustic tomography and sensing in biomedicine. Physics in Medicine and Biology , 2009, 54(19): R59–R97
doi: 10.1088/0031-9155/54/19/R01 pmid:19724102
5 Anna Devor S S, Srinivasan V J, Yaseen M A, Nizar K, Saisan P A, Tian P, Dale A M, Vinogradov S A, Maria Angela Franceschini D A B. Frontiers in optical imaging of cerebral blood flow and metabolism. Journal of Cerebral Blood Flow and Metabolism , 2012, 32: 1259– 1276
6 Zhang S, Murphy T H. Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biology , 2007, 5(5): e119
doi: 10.1371/journal.pbio.0050119 pmid:17456007
7 Grant P E, Roche-Labarbe N, Surova A, Themelis G, Selb J, Warren E K, Krishnamoorthy K S, Boas D A, Franceschini M A. Increased cerebral blood volume and oxygen consumption in neonatal brain injury. Journal of Cerebral Blood Flow and Metabolism , 2009, 29(10): 1704–1713
doi: 10.1038/jcbfm.2009.90 pmid:19675563
8 Mesquita R C, Durduran T, Yu G, Buckley E M, Kim M N, Zhou C, Choe R, Sunar U,Yodh A G. Direct measurement of tissue blood flow and metabolism with diffuse optics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 2011, 369(1955): 4390–4406
9 Obrig H, Steinbrink J. Non-invasive optical imaging of stroke. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 2011, 369(1955): 4470–4494
10 Wilson K, Homan K, Emelianov S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nature Communications , 2012, 3: 618
doi: 10.1038/ncomms1627
11 Wang L V. Tutorial on photoacoustic microscopy and computed tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(1): 171–179
doi: 10.1109/JSTQE.2007.913398
12 Wang L V. Multiscale photoacoustic microscopy and computed tomography. Nature Photonics , 2009, 3(9): 503–509
doi: 10.1038/nphoton.2009.157 pmid:20161535
13 Wang L V. Prospects of photoacoustic tomography. Medical Physics , 2008, 35(12): 5758–5767
doi: 10.1118/1.3013698 pmid:19175133
14 Hu S, Gonzales E, Soetikno B, Gong E, Yan P, Maslov K, Lee J M, Wang L V. Optical-resolution photoacoustic microscopy of ischemic stroke. In: Proceedings of SPIE, Photons Plus Ultrasound: Imaging and Sensing . 2011, 7899: 789906
doi: 10.1117/12.874366
15 Soetikno B, Hu S, Gonzales E, Zhong Q, Maslov K, Lee J M, Wang L V. Vessel segmentation analysis of ischemic stroke images acquired with photoacoustic microscopy. In: Proceedings of SPIE, Photons Plus Ultrasound: Imaging and Sensing . 2012, 8233: 822345
doi: 10.1117/12.911089
16 Deng Z L, Wang Z, Yang X Q, Luo Q M, Gong H.In vivo imaging of hemodynamics and oxygen metabolism in acute focal cerebral ischemic rats with laser speckle imaging and functional photoacoustic microscopy. Journal of Biomedical Optics , 2012, 17(8): 081415
doi: 10.1117/1.JBO.17.8.081415
17 Ermilov S A, Khamapirad T, Conjusteau A, Leonard M H, Lacewell R, Mehta K, Miller T, Oraevsky A A. Laser optoacoustic imaging system for detection of breast cancer. Journal of Biomedical Optics , 2009, 14(2): 024007
18 Esenaliev R O, Karabutov A A, Oraevsky A A. Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 981–988
doi: 10.1109/2944.796320
19 Ku G, Wang L V. Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Optics Letters , 2005, 30(5): 507–509
doi: 10.1364/OL.30.000507 pmid:15789718
20 Hamilton J D, O’Donnell M. High frequency ultrasound imaging with optical arrays. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998, 45(1): 216–235
doi: 10.1109/58.646927 pmid:18244174
21 Payne B P, Venugopalan V, Miki? B B, Nishioka N S. Optoacoustic tomography using time-resolved interferometric detection of surface displacement. Journal of Biomedical Optics , 2003, 8(2): 273–280
doi: 10.1117/1.1559727 pmid:12683854
22 Carp S A, Guerra A, Duque S Q, Venugopalan V. Optoacoustic imaging using interferometric measurement of surface displacement. Applied Physics Letters , 2004, 85(23): 5772–5774
doi: 10.1063/1.1831569
23 Carp S A, Venugopalan V. Optoacoustic imaging based on the interferometric measurement of surface displacement. Journal of Biomedical Optics , 1999, 12(6): 064001
24 Xu Y, Wang L V. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control , 2006, 53(3): 542–548
doi: 10.1109/TUFFC.2006.1610562 pmid:16555762
25 Yang X M, Wang L V. Monkey brain cortex imaging by photoacoustic tomography. Journal of Biomedical Optics , 2008, 13(4): 044009
doi: 10.1117/1.2967907
26 Yao J, Wang L V. Photoacoustic tomography: fundamentals, advances and prospects. Contrast Media &amp; Molecular Imaging , 2011, 6(5): 332–345
doi: 10.1002/cmmi.443 pmid:22025335
27 Dunn A K. Laser speckle contrast imaging of cerebral blood flow. Annals of Biomedical Engineering , 2012, 40(2): 367–377
28 Song L, Elson D S. Effect of signal intensity and camera quantization on laser speckle contrast analysis. Biomedical Optics Express , 2013, 4(1): 89–104
doi: 10.1364/BOE.4.000089 pmid:23304650
29 He H, Tang Y, Zhou F, Wang J, Luo Q, Li P. Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging. Optics Letters , 2012, 37(18): 3774–3776
pmid:23041855
30 Zhang H Y, Li P, Feng N, Qiu J, Li B, Luo W, Luo Q. Correcting the detrimental effects of nonuniform intensity distribution on fiber-transmitting laser speckle imaging of blood flow. Optics Express , 2012, 20(1): 508–517
doi: 10.1364/OE.20.000508 pmid:22274372
31 Song L P, Elson D S. Dual-wavelength endoscopic laser speckle contrast imaging system for indicating tissue blood flow and oxygenation. In: Proceedings of SPIE, Dynamics and Fluctuations in Biomedical Photonics IX . 2012, 8222: 822209
32 Lu H Y, Miao P, Liu Q, Li Y, Tong S B. Dual-modal (OIS/LSCI) imager of cerebral cortex in freely moving animals. In: Proceedings of SPIE, 10th International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2011) . 2012, 8329: 83290P
33 Boas D A, Dunn A K. Laser speckle contrast imaging in biomedical optics. Journal of Biomedical Optics , 2010, 15(1): 011109
34 Parthasarathy A B, Kazmi S M, Dunn A K. Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging. Biomedical Optics Express , 2010, 1(1): 246– 259
doi: 10.1364/BOE.1.000246 pmid:21258462
35 Levy H, Ringuette D, Levi O. Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow. Biomedical Optics Express , 2012, 3(4): 777–791
doi: 10.1364/BOE.3.000777 pmid:22574265
36 Qin J, Shi L, Dziennis S, Reif R, Wang R K. Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model. Optics Letters , 2012, 37(19): 4005–4007
doi: 10.1364/OL.37.004005 pmid:23027260
37 Wang Z, Luo W, Zhou F, Li P, Luo Q. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex. Journal of Biomedical Optics , 2012, 17(12): 125001
doi: 10.1117/1.JBO.17.12.125001 pmid:23203323
38 Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy. Science (New York, NY) , 1990, 248(4951): 73–76
doi: 2321027" target="_blank">10.1126/science. pmid:2321027 pmid:2321027
39 Denk W, Svoboda K. Photon upmanship: techreview why multiphoton imaging is more than a gimmick. Neuron , 1997, 18: 351–357
40 Shih A Y, Driscoll J D, Drew P J, Nishimura N, Schaffer C B, Kleinfeld D. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. Journal of Cerebral Blood Flow and Metabolism , 2012, 32(7): 1277–1309
doi: 10.1038/jcbfm.2011.196 pmid:22293983
41 Ginsberg M D, Busto R. Rodent models of cerebral ischemia. Stroke , 1989, 20(12): 1627–1642
doi: 10.1161/01.STR.20.12.1627 pmid:2688195
42 K?vari E, Gold G, Herrmann F R, Canuto A, Hof P R, Bouras C, Giannakopoulos P. Cortical microinfarcts and demyelination affect cognition in cases at high risk for dementia. Neurology , 2007, 68(12): 927–931
doi: 10.1212/01.wnl.0000257094.10655.9a pmid:17372128
43 Suter O C, Sunthorn T, Kraftsik R, Straubel J, Darekar P, Khalili K, Miklossy J. Cerebral hypoperfusion generates cortical watershed microinfarcts in Alzheimer disease. Stroke , 2002, 33(8): 1986–1992
doi: 10.1161/01.STR.0000024523.82311.77 pmid:12154250
44 Hua R, Walz W. The need for animal models in small-vessel brain disease. Critical Reviews in Neurobiology , 2006, 18(1-2): 5–11
doi: 10.1615/CritRevNeurobiol.v18.i1-2.20 pmid:17725504
45 Mohajerani M H, Aminoltejari K, Murphy T H. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proceedings of the National Academy of Sciences of the United States of America , 2011, 108(22): E183–E191
doi: 10.1073/pnas.1101914108 pmid:21576480
46 Nishimura N, Schaffer C B, Friedman B, Lyden P D, Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences of the United States of America , 2007, 104(1): 365–370
doi: 10.1073/pnas.0609551104 pmid:17190804
47 Nishimura N, Schaffer C B, Friedman B, Tsai P S, Lyden P D, Kleinfeld D. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nature Methods , 2006, 3(2): 99–108
doi: 10.1038/nmeth844 pmid:16432519
48 Schaffer C B, Friedman B, Nishimura N, Schroeder L F, Tsai P S, Ebner F F, Lyden P D, Kleinfeld D. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biology , 2006, 4(2): e22
doi: 10.1371/journal.pbio.0040022 pmid:16379497
49 Watson B D, Dietrich W D, Busto R, Wachtel M S, Ginsberg M D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Annals of Neurology , 1985, 17(5): 497–504
doi: 10.1002/ana.410170513 pmid:4004172
50 Brown C E, Li P, Boyd J D, Delaney K R, Murphy T H. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. The Journal of Neuroscience , 2007, 27(15): 4101–4109
doi: 10.1523/JNEUROSCI.4295-06.2007 pmid:17428988
51 Mostany R, Portera-Cailliau C. Absence of large-scale dendritic plasticity of layer 5 pyramidal neurons in peri-infarct cortex. The Journal of Neuroscience , 2011, 31(5): 1734–1738
doi: 10.1523/JNEUROSCI.4386-10.2011 pmid:21289182
52 Zhang S, Boyd J, Delaney K, Murphy T H. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. The Journal of Neuroscience , 2005, 25(22): 5333–5338
doi: 10.1523/JNEUROSCI.1085-05.2005 pmid:15930381
53 Drew P J, Shih A Y, Driscoll J D, Knutsen P M, Blinder P, Davalos D, Akassoglou K, Tsai P S, Kleinfeld D. Chronic optical access through a polished and reinforced thinned skull. Nature Methods , 2010, 7(12): 981–984
doi: 10.1038/nmeth.1530 pmid:20966916
54 Davalos D, Grutzendler J, Yang G, Kim J V, Zuo Y, Jung S, Littman D R, Dustin M L, Gan W B. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience , 2005, 8(6): 752–758
doi: 10.1038/nn1472 pmid:15895084
55 Sigler A, Murphy T H. In vivo 2-photon imaging of fine structure in the rodent brain: before, during, and after stroke. Stroke , 2010, 41(10 Suppl): S117–S123
doi: 10.1161/STROKEAHA.110.594648 pmid:20876484
56 Dijkhuizen R M, Ren J M, Mandeville J B, Wu O, Ozdag F M, Moskowitz M A, Rosen B R, Finklestein S P. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proceedings of the National Academy of Sciences of the United States of America , 2001, 98(22): 12766–12771
doi: 10.1073/pnas.231235598 pmid:11606760
57 Li P, Murphy T H. Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion. The Journal of Neuroscience , 2008, 28(46): 11970–11979
doi: 10.1523/JNEUROSCI.3724-08.2008 pmid:19005062
58 Murphy T H, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nature Reviews. Neuroscience , 2009, 10(12): 861–872
doi: 10.1038/nrn2735 pmid:19888284
59 Brown C E, Aminoltejari K, Erb H, Winship I R, Murphy T H. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. The Journal of Neuroscience , 2009, 29(6): 1719–1734
doi: 10.1523/JNEUROSCI.4249-08.2009 pmid:19211879
60 Winship I R, Murphy T H. Remapping the somatosensory cortex after stroke: insight from imaging the synapse to network. Neuroscientist , 2009, 15(5): 507–524
doi: 10.1177/1073858409333076 pmid:19622841
61 Carmichael S T. Plasticity of cortical projections after stroke. Neuroscientist , 2003, 9(1): 64–75
doi: 10.1177/1073858402239592 pmid:12580341
62 Carmichael S T. Cellular and molecular mechanisms of neural repair after stroke: making waves. Annals of Neurology , 2006, 59(5): 735–742
doi: 10.1002/ana.20845 pmid:16634041
63 Coq J O, Xerri C. Acute reorganization of the forepaw representation in the rat SI cortex after focal cortical injury: neuroprotective effects of piracetam treatment. European Journal of Neuroscience , 1999, 11(8): 2597–2608
doi: 10.1046/j.1460-9568.1999.00673.x pmid:10457159
64 Dancause N, Barbay S, Frost S B, Plautz E J, Chen D, Zoubina E V, Stowe A M, Nudo R J. Extensive cortical rewiring after brain injury. The Journal of Neuroscience , 2005, 25(44): 10167–10179
doi: 10.1523/JNEUROSCI.3256-05.2005 pmid:16267224
65 Nudo R J, Milliken G W. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. Journal of Neurophysiology , 1996, 75(5): 2144–2149
pmid:8734610
66 Rouiller E M, Yu X H, Moret V, Tempini A, Wiesendanger M, Liang F. Dexterity in adult monkeys following early lesion of the motor cortical hand area: the role of cortex adjacent to the lesion. European Journal of Neuroscience , 1998, 10(2): 729–740
doi: 10.1046/j.1460-9568.1998.00075.x pmid:9749734
67 Castro-Alamancos M A, Borrel J. Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex. Neuroscience , 1995, 68(3): 793–805
doi: 10.1016/0306-4522(95)00178-L pmid:8577374
68 Dijkhuizen R M, Singhal A B, Mandeville J B, Wu O, Halpern E F, Finklestein S P, Rosen B R, Lo E H. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. The Journal of Neuroscience , 2003, 23(2): 510–517
pmid:12533611
69 Rossini P M, Altamura C, Ferreri F, Melgari J M, Tecchio F, Tombini M, Pasqualetti P, Vernieri F. Neuroimaging experimental studies on brain plasticity in recovery from stroke. Europa Medicophysica , 2007, 43(2): 241–254
pmid:17589415
70 Schaechter J D, Moore C I, Connell B D, Rosen B R, Dijkhuizen R M. Structural and functional plasticity in the somatosensory cortex of chronic stroke patients. Brain , 2006, 129(10): 2722–2733
doi: 10.1093/brain/awl214 pmid:16921177
71 Johnston D G, Denizet M, Mostany R, Portera-Cailliau C. Chronic in vivo imaging shows no evidence of dendritic plasticity or functional remapping in the contralesional cortex after stroke. Cerebral Cortex , 2012,
doi: 10.1093/cercor/bhs092 pmid:22499800
72 Kleinfeld D, Mitra P P, Helmchen F, Denk W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings of the National Academy of Sciences of the United States of America , 1998, 95(26): 15741–15746
doi: 10.1073/pnas.95.26.15741 pmid:9861040
73 Devor A, Tian P, Nishimura N, Teng I C, Hillman E M C, Narayanan S N, Ulbert I, Boas D A, Kleinfeld D, Dale A M. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. The Journal of Neuroscience , 2007, 27(16): 4452–4459
doi: 10.1523/JNEUROSCI.0134-07.2007 pmid:17442830
74 Tian P, Teng I C, May L D, Kurz R, Lu K, Scadeng M, Hillman E M C, De Crespigny A J, D’Arceuil H E, Mandeville J B, Marota J J, Rosen B R, Liu T T, Boas D A, Buxton R B, Dale A M, Devor A. Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(34): 15246–15251
doi: 10.1073/pnas.1006735107 pmid:20696904
75 Kobat D, Durst M E, Nishimura N, Wong A W, Schaffer C B, Xu C. Deep tissue multiphoton microscopy using longer wavelength excitation. Optics Express , 2009, 17(16): 13354–13364
doi: 10.1364/OE.17.013354 pmid:19654740
76 Kirchhoff F, Debarbieux F, Kronland-martinet C, Cojocaru G, Popa-Wagner A. Combined two-photon laser-scanning microscopy and spectral microCT X-ray imaging to characterize the cellular signature and evolution of microstroke foci. Romanian Journal of Morphology and Embryology, 2012, 53(3 Suppl): 671–675
77 Feng G, Mellor R H, Bernstein M, Keller-Peck C, Nguyen Q T, Wallace M, Nerbonne J M, Lichtman J W, Sanes J R. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron , 2000, 28(1): 41–51
doi: 10.1016/S0896-6273(00)00084-2 pmid:11086982
78 Helmchen F, Fee M S, Tank D W, Denk W. A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron , 2001, 31(6): 903–912
doi: 10.1016/S0896-6273(01)00421-4 pmid:11580892
79 Piyawattanametha W, Cocker E D, Burns L D, Barretto R P J, Jung J C, Ra H, Solgaard O, Schnitzer M J. In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. Optics Letters , 2009, 34(15): 2309–2311
80 Risher W C, Ard D, Yuan J, Kirov S A. Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra. The Journal of Neuroscience , 2010, 30(29): 9859–9868
doi: 10.1523/JNEUROSCI.1917-10.2010 pmid:20660268
Related articles from Frontiers Journals
[1] Yue FANG,Cuifang KUANG,Ye MA,Yifan WANG,Xu LIU. Resolution and contrast enhancements of optical microscope based on point spread function engineering[J]. Front. Optoelectron., 2015, 8(2): 152-162.
[2] Jun LIU. Two-photon microscopy in pre-clinical and clinical cancer research[J]. Front. Optoelectron., 2015, 8(2): 141-151.
[3] Arkady S. ABDURASHITOV,Vladislav V. LYCHAGOV,Olga A. SINDEEVA,Oxana V. SEMYACHKINA-GLUSHKOVSKAYA,Valery V. TUCHIN. Histogram analysis of laser speckle contrast image for cerebral blood flow monitoring[J]. Front. Optoelectron., 2015, 8(2): 187-194.
[4] ZHOU Liwei. On the theory of temporal aberrations for dynamic electron optics[J]. Front. Optoelectron., 2008, 1(1-2): 50-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed