Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2013, Vol. 6 Issue (1) : 46-56     DOI: 10.1007/s12200-012-0305-7
REVIEW ARTICLE |
Key technologies and system proposals of TWDM-PON
Zhengxuan LI, Lilin YI(), Weisheng HU
The State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240 China
Download: PDF(580 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, key technologies, system proposals and future directions of next generation passive optical networks stage 2 (NG-PON2) are reviewed. We first discuss the potential solutions for NG-PON2 standardization. Then we focus on time and wavelength division multiplexed PON (TWDM-PON), which is the primary solution selected by Full Service Access Network (FSAN). The key technologies in TWDM-PON configuration are analyzed, including how to improve the bandwidth capacity and power budget of the system, and choose upstream tunable transceiver, etc. Several system proposals are illustrated as candidates for NG-PON2 configuration.

Keywords next generation passive optical networks stage 2 (NG-PON2)      time and wavelength division multiplexed PON (TWDM-PON)      tunable transmitter      tunable receiver      power budget     
Corresponding Authors: YI Lilin,Email:lilinyi@sjtu.edu.cn   
Issue Date: 05 March 2013
 Cite this article:   
Zhengxuan LI,Lilin YI,Weisheng HU. Key technologies and system proposals of TWDM-PON[J]. Front Optoelec, 2013, 6(1): 46-56.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-012-0305-7
http://journal.hep.com.cn/foe/EN/Y2013/V6/I1/46
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhengxuan LI
Lilin YI
Weisheng HU
Fig.1  Standardization roadmap of PON evolution (Ref. [])
Fig.1  Standardization roadmap of PON evolution (Ref. [])
Fig.1  Standardization roadmap of PON evolution (Ref. [])
Fig.1  Standardization roadmap of PON evolution (Ref. [])
Fig.2  System configuration for TWDM-PON
Fig.2  System configuration for TWDM-PON
Fig.2  System configuration for TWDM-PON
Fig.2  System configuration for TWDM-PON
Fig.3  Downstream wavelength reuse and continuous-wave (CW) injection locking schemes (Refs. [,])
Fig.3  Downstream wavelength reuse and continuous-wave (CW) injection locking schemes (Refs. [,])
Fig.3  Downstream wavelength reuse and continuous-wave (CW) injection locking schemes (Refs. [,])
Fig.3  Downstream wavelength reuse and continuous-wave (CW) injection locking schemes (Refs. [,])
Fig.4  Self-seeding FP-LD (Ref. [])
Fig.4  Self-seeding FP-LD (Ref. [])
Fig.4  Self-seeding FP-LD (Ref. [])
Fig.4  Self-seeding FP-LD (Ref. [])
Fig.5  Measured frequency responses of TO-can packaged (dotted) and butterfly-packaged (solid) RSOAs (Ref. [])
Fig.5  Measured frequency responses of TO-can packaged (dotted) and butterfly-packaged (solid) RSOAs (Ref. [])
Fig.5  Measured frequency responses of TO-can packaged (dotted) and butterfly-packaged (solid) RSOAs (Ref. [])
Fig.5  Measured frequency responses of TO-can packaged (dotted) and butterfly-packaged (solid) RSOAs (Ref. [])
Fig.6  Experimental setup used to evaluate 25.78 Gb/s directly modulated RSOA (Ref. [])
Fig.6  Experimental setup used to evaluate 25.78 Gb/s directly modulated RSOA (Ref. [])
Fig.6  Experimental setup used to evaluate 25.78 Gb/s directly modulated RSOA (Ref. [])
Fig.6  Experimental setup used to evaluate 25.78 Gb/s directly modulated RSOA (Ref. [])
Fig.7  optical spectra of signals and transmittance of DI (Ref. [])
Fig.7  optical spectra of signals and transmittance of DI (Ref. [])
Fig.7  optical spectra of signals and transmittance of DI (Ref. [])
Fig.7  optical spectra of signals and transmittance of DI (Ref. [])
Fig.8  Eye diagrams (Ref. [])
Fig.8  Eye diagrams (Ref. [])
Fig.8  Eye diagrams (Ref. [])
Fig.8  Eye diagrams (Ref. [])
Fig.9  40/10 Gb/s TWDM-PON (Ref. [])
Fig.9  40/10 Gb/s TWDM-PON (Ref. [])
Fig.9  40/10 Gb/s TWDM-PON (Ref. [])
Fig.9  40/10 Gb/s TWDM-PON (Ref. [])
Fig.10  Network scheme (Ref. [])
Fig.10  Network scheme (Ref. [])
Fig.10  Network scheme (Ref. [])
Fig.10  Network scheme (Ref. [])
Fig.11  Spectra of upstream laser (Ref. [])
Fig.11  Spectra of upstream laser (Ref. [])
Fig.11  Spectra of upstream laser (Ref. [])
Fig.11  Spectra of upstream laser (Ref. [])
Fig.12  Symmetric 40 Gb/s TWDM-PON (Ref. [])
Fig.12  Symmetric 40 Gb/s TWDM-PON (Ref. [])
Fig.12  Symmetric 40 Gb/s TWDM-PON (Ref. [])
Fig.12  Symmetric 40 Gb/s TWDM-PON (Ref. [])
1 Wong E. Next-generation broadband access networks and technologies. Journal of Lightwave Technology , 2012, 30(4): 597-608
2 Vetter P. Next generation optical access technologies. In: Proceedings of European Conference and Exhibition on Optical Communication . 2012, Tu.3.G
3 Effenberger F. XG-PON1 versus NG-PON2: Which one will win? In: Proceedings of European Conference and Exhibition on Optical Communication . 2012, Tu.4.B
4 Harstead E, van Veen D, Vetter P. Technologies for NGPON2: Why I think 40 G TDM PON (XLG-PON) is the clear winner. In: Proceedings of Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference . 2012
5 Yu J J, Jia Z S, Ji P N, Wang T. 40-Gb/s wavelength-division-multiplexing passive optical network with centralized lightwave source. In: Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference . 2008, OTuH8
6 Luo Y, Zhou X, Effenberger F, Yan X, Peng G, Qian Y, Ma Y. Time and wavelength division multiplexed passive optical network (TWDM-PON) for next generation pon stage 2 (NG-PON2). Journal of Lightwave Technology , 2012, (99):1-6
7 Liu B, Zhang L J, Xin X J, Yu J J. Constellation-masked secure communication technique for OFDM-PON. Optics Express , 2012, 20(22): 25161-25168
doi: 10.1364/OE.20.025161 pmid:23187282
8 Shin D J, Keh Y C, Kwon J W, Lee E H, Lee J K, Park M K, Park J W, Oh Y K, Kim S W, Yun I K, Shin H C, Heo D, Lee J S, Shin H S, Kim H S, Park S B, Jung D K, Hwang S, Oh Y J, Jang D H, Shim C S. Low-cost WDM-PON with colorless bidirectional transceivers. Journal of Lightwave Technology , 2006, 24(1): 158-165
doi: 10.1109/JLT.2005.861122
9 Lang R. Injection locking properties of a semiconductor laser. IEEE Journal of Quantum Electronics , 1982, 18(6): 976-983
doi: 10.1109/JQE.1982.1071632
10 Spiekman L.Active devices in passive optical networks. In: Proceedings of Optical Fiber Communication Conference . 2012, OM2I.4
11 Attygalle M, Wen Y J, Shankar J, Nirmalathas A, Cheng X, Wang Y. Increasing upstream capacity in TDM-PON with multiple-wavelength transmission using Fabry-Perot laser diodes. Optics Express , 2007, 15(16): 10247-10252
doi: 10.1364/OE.15.010247 pmid:19547373
12 Chan L, Chan C, Tong D, Tong F, Chen L. Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulator for WDM access networks. Electronics Letters , 2002, 38(1): 43-45
doi: 10.1049/el:20020015
13 Zhu M, Xiao S, Zhou Z, Guo W, Yi L, Bi M, Hu W, Geller B. An upstream multi-wavelength shared PON based on tunable self-seeding Fabry-Pérot laser diode for upstream capacity upgrade and wavelength multiplexing. Optics Express , 2011, 19(9): 8000-8010
doi: 10.1364/OE.19.008000 pmid:21643049
14 Lee W, Park M Y, Cho S H, Lee J, Kim C, Jeong G, Kim B W. Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers. IEEE Photonics Technology Letters , 2005, 17(11): 2460-2462
doi:10.1109/LPT.2005.858148
15 Li Z, Yi L, Zhang Y, Xiao S, Hu W. Upstream multi-wavelength shared TDM-PON using RSOA based directly modulated tunable fiber ring laser. In: Proceedings of Communications and Photonics Conference and Exhibition . 2011, 1-6
16 Cho K Y, Lee Y J, Choi H Y, Murakami A, Agata A, Takushima Y, Chung Y C. Effects of reflection in RSOA-based WDM PON utilizing remodulation technique. Journal of Lightwave Technology , 2009, 27(10): 1286-1295
doi: 10.1109/JLT.2009.2016580
17 Lin Z R, Liu C K, Jhang Y J, Keiser G. Tunable directly modulated fiber ring laser using a reflective semiconductor optical amplifier for WDM access networks. Optics Express , 2010, 18(17): 17610-17619
doi: 10.1364/OE.18.017610 pmid:20721147
18 de Valicourt G, Make D, Fortin C, Enard A, Van Dijk F, Brenot R. 10 Gbit/s modulation of reflective SOA without any electronic processing. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference . 2011, OThT2
19 Cho K, Choi B, Takushima Y, Chung Y. 25.78-Gb/s operation of RSOA for next-generation optical access networks. IEEE Photonics Technology Letters , 2011, 23(8): 495-497
doi: 10.1109/LPT.2011.2112759
20 Cho K Y, Takushima Y, Chung Y C. Demonstration of 11-Gb/s, 20-km reach WDM PON using directly-modulated RSOA with 4-ary PAM signal. In: Proceedings of Optical Fiber Communication Conference . 2010, OWG1
21 Omella M, Polo V, Lazaro J, Schrenk B, Prat J. 10 Gb/s RSOA transmission by direct duobinary modulation. In: Proceedings of 34th European Conference on Optical Communication . 2008, Tu.3.E.4
22 Kim H. 10-Gb/s operation of RSOA using a delay interferometer. IEEE Photonics Technology Letters ,2010, 22(18): 1379-1381
doi:10.1109/LPT.2010.2058797
23 Girault G, Bramerie L, Vaudel O, Lobo S, Besnard P, Joindot M, Simon J C, Kazmierski C, Dupuis N, Garreau A. 10 Gbit/s PON demonstration using a REAM-SOA in a bidirectional fiber configuration up to 25 km SMF. In: Proceedings of 34th European Conference on Optical Communication . 2008, P.6.08
24 Papagiannakis I, Klonidis D, Birbas A N, Kikidis J, Tomkos I. Performance improvement of low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s. IEEE Photonics Technology Letters , 2008, 20(23): 1983-1985
doi: 10.1109/LPT.2008.2006250
25 Liu Y R, Davies A R, Ingham J D, Penty R V, White I H. Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems. IEEE Photonics Technology Letters , 2005, 17(10): 2026-2028
doi: 10.1109/LPT.2005.856367
26 Ossieur P, Antony C, Naughton A, Clarke A M, Krimmel H G, Yin X, Qiu X Z, Ford C, Borghesani A, Moodie D, Poustie A, Wyatt R, Harmon B, Lealman I, Maxwell G, Rogers D, Smith D W, Smolorz S, Rohde H, Nesset D, Davey R P, Townsend P D. Demonstration of a 32×512 Split, 100 km reach, 2×32×10 Gb/s hybrid DWDM-TDMA PON using tunable external cavity lasers in the ONUs. Journal of Lightwave Technology , 2011, 29(24): 3705-3718
27 Wei F, Sun Y, Chen D, Xin G, Ye Q, Cai H, Qu R. Tunable external cavity diode laser with a PLZT electrooptic ceramic deflector. IEEE Photonics Technology Letters , 2011, 23(5): 296-298
28 Zheng J, Ge C, Wagner C, Meng L, Cunningham B, Eden J. Optically tunable ring external-cavity laser. In: Proceedings of Photonics Conference (PHO) . 2011, 644-645
29 Hu T, Wang W J, Qiu C, Yu P, Qiu H Y, Zhao Y, Jiang X Q, Yang J Y. Thermally tunable filters based on third-order microring resonators for WDM applications. IEEE Photonics Technology Letters , 2012, 24(6): 524-526
doi: 10.1109/LPT.2012.2182988
30 Iodice M, Cocorullo G, Della Corte F, Rendina I. Silicon Fabry-Perot filter for WDM systems channels monitoring. Optics Communications , 2000, 183(5-6): 415-418
doi: 10.1016/S0030-4018(00)00901-9
31 Domash L, Wu M, Nemchuk N, Ma E. Tunable and switchable multiple-cavity thin film filters. Journal of Lightwave Technology , 2004, 22(1): 126-135
doi: 10.1109/JLT.2004.823349
32 Lequime M, Parmentier R, Lemarchand F, Amra C. Toward tunable thin-film filters for wavelength division multiplexing applications. Applied Optics , 2002, 41(16): 3277-3284
doi: 10.1364/AO.41.003277 pmid:12064413
33 Goh C S, Set S Y, Kikuchi K. Widely tunable optical filters based on fiber Bragg gratings. IEEE Photonics Technology Letters , 2002, 14(9): 1306-1308
doi: 10.1109/LPT.2002.801080
34 Li Z, Yi L, Zhang Y, Dong Y, Xiao S, Hu W. Compatible TDM/WDM PON using a single tunable optical filter for both downstream wavelength selection and upstream wavelength generation. IEEE Photonics Technology Letters , 2012, 24(10): 797-799
doi: 10.1109/LPT.2012.2186435
35 Yi L, Li Z, Dong Y, Xiao S, Hu W. 80/10 Gb/s downstream/upstream capacity multi-wavelength TDM-PON. In: Proceedings of 8 th International Symposium on Communication Systems Networks & Digital Signal Processing (CSNDSP) . 2012, 1-4
36 Li Z, Yi L, Zhang Y, Dong Y, Xiao S, Hu W. Mitigation of reflection-induced crosstalk in multi-wavelength TDM-PON using spectral red-shifted, tunable fiber ring laser based upstream source. In: Proceedings of Optical Fiber Communication Conference . 2012, OM2I.2
37 Yi L, Li Z, Dong Y, Xiao S, Chen J, Hu W. Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser. Optics Express , 2012, 20(9): 10416-10425
doi: 10.1364/OE.20.010416 pmid:22535132
38 Li Z, Yi L, Bi M, Li J, He H, Yang X , Hu W. Experimental demonstration of a symmetric 40-Gb/s TWDM-PON. In: Proceedings of Optical Fiber Communication Conference . 2013, NTh4F.3
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed