Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2013, Vol. 6 Issue (1) : 57-66     DOI: 10.1007/s12200-012-0304-8
REVIEW ARTICLE |
Signal generation and processing at 100 Gb/s based on optical time division multiplexing
Li HUO(), Qiang WANG, Yanfei XING, Caiyun LOU
Tsinghua National Laboratory for Information Science and Technology, State Key Laboratory of Integrated Optoelectronics, Department of Electronics, Tsinghua University, Beijing 100084, China
Download: PDF(852 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we review our recent works in 100 Gb/s signal generation and processing. A high-speed 100 Gb/s system with on-off keying (OOK) modulation format is implemented by using optical time division multiplexing (OTDM) method. As modifications of this system, simultaneous multicolor optical signal generation and 100 Gb/s return-to-zero (RZ)-to-non-return-to-zero (NRZ) format conversion are presented. We also demonstrate basic all-optical signal processing functions of 100 GHz clock recovery and 100 Gb/s all-optical 2R generation based on semiconductor optical amplifiers (SOAs).

Keywords optical time division multiplexing (OTDM)      2R regeneration      clock recovery      semiconductor optical amplifier (SOA)     
Corresponding Authors: HUO Li,Email:lhuo@tsinghua.edu.cn   
Issue Date: 05 March 2013
 Cite this article:   
Yanfei XING,Caiyun LOU,Li HUO, et al. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-012-0304-8
http://journal.hep.com.cn/foe/EN/Y2013/V6/I1/57
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yanfei XING
Caiyun LOU
Li HUO
Qiang WANG
Fig.1  Schematic of 100 Gb/s OOK OTDM system
Fig.1  Schematic of 100 Gb/s OOK OTDM system
Fig.1  Schematic of 100 Gb/s OOK OTDM system
Fig.1  Schematic of 100 Gb/s OOK OTDM system
Fig.2  Eye-diagram of 100 Gb/s OOK OTDM signal
Fig.2  Eye-diagram of 100 Gb/s OOK OTDM signal
Fig.2  Eye-diagram of 100 Gb/s OOK OTDM signal
Fig.2  Eye-diagram of 100 Gb/s OOK OTDM signal
Fig.3  BER curve of 4 demultiplexed tributaries of 100 Gb/s signal
Fig.3  BER curve of 4 demultiplexed tributaries of 100 Gb/s signal
Fig.3  BER curve of 4 demultiplexed tributaries of 100 Gb/s signal
Fig.3  BER curve of 4 demultiplexed tributaries of 100 Gb/s signal
Fig.4  Schematic of multicolor ultrashort pulse source
Fig.4  Schematic of multicolor ultrashort pulse source
Fig.4  Schematic of multicolor ultrashort pulse source
Fig.4  Schematic of multicolor ultrashort pulse source
Fig.5  (a) Optical spectrum of signal after HNLF (black) and spectra of filtered 4 wavelengths (colored); (b)-(e) waveforms of filtered optical pulse on four wavelengths, corresponding to WL-1-WL-4, respectively
Fig.5  (a) Optical spectrum of signal after HNLF (black) and spectra of filtered 4 wavelengths (colored); (b)-(e) waveforms of filtered optical pulse on four wavelengths, corresponding to WL-1-WL-4, respectively
Fig.5  (a) Optical spectrum of signal after HNLF (black) and spectra of filtered 4 wavelengths (colored); (b)-(e) waveforms of filtered optical pulse on four wavelengths, corresponding to WL-1-WL-4, respectively
Fig.5  (a) Optical spectrum of signal after HNLF (black) and spectra of filtered 4 wavelengths (colored); (b)-(e) waveforms of filtered optical pulse on four wavelengths, corresponding to WL-1-WL-4, respectively
Fig.6  Eye-diagrams of 100-Gb/s RZ-OOK signal (a) and converted NRZ-OOK signal (b)
Fig.6  Eye-diagrams of 100-Gb/s RZ-OOK signal (a) and converted NRZ-OOK signal (b)
Fig.6  Eye-diagrams of 100-Gb/s RZ-OOK signal (a) and converted NRZ-OOK signal (b)
Fig.6  Eye-diagrams of 100-Gb/s RZ-OOK signal (a) and converted NRZ-OOK signal (b)
Fig.7  Experimental setup of 100 GHz clock recovery
Fig.7  Experimental setup of 100 GHz clock recovery
Fig.7  Experimental setup of 100 GHz clock recovery
Fig.7  Experimental setup of 100 GHz clock recovery
Fig.8  (a) Waveforms of recovered clock with FPC only; (b) FPC and 40 ps SOA; (c) FPC and 10 ps SOA
Fig.8  (a) Waveforms of recovered clock with FPC only; (b) FPC and 40 ps SOA; (c) FPC and 10 ps SOA
Fig.8  (a) Waveforms of recovered clock with FPC only; (b) FPC and 40 ps SOA; (c) FPC and 10 ps SOA
Fig.8  (a) Waveforms of recovered clock with FPC only; (b) FPC and 40 ps SOA; (c) FPC and 10 ps SOA
Fig.9  Illustration for principle of XGC
Fig.9  Illustration for principle of XGC
Fig.9  Illustration for principle of XGC
Fig.9  Illustration for principle of XGC
Fig.10  Experimental setup for 100-Gb/s 2R regeneration
Fig.10  Experimental setup for 100-Gb/s 2R regeneration
Fig.10  Experimental setup for 100-Gb/s 2R regeneration
Fig.10  Experimental setup for 100-Gb/s 2R regeneration
Fig.11  (a) Eye-diagrams of degraded 100-Gb/s signal with factor of 9.2 dB; (b) logic-preserved signal with factor of 12.3 dB at SOA 1 output; (c) logic-inverted signal at SOA 1 output; (d) 2R regenerated with factor of 19.6 dB at SOA 2 output
Fig.11  (a) Eye-diagrams of degraded 100-Gb/s signal with factor of 9.2 dB; (b) logic-preserved signal with factor of 12.3 dB at SOA 1 output; (c) logic-inverted signal at SOA 1 output; (d) 2R regenerated with factor of 19.6 dB at SOA 2 output
Fig.11  (a) Eye-diagrams of degraded 100-Gb/s signal with factor of 9.2 dB; (b) logic-preserved signal with factor of 12.3 dB at SOA 1 output; (c) logic-inverted signal at SOA 1 output; (d) 2R regenerated with factor of 19.6 dB at SOA 2 output
Fig.11  (a) Eye-diagrams of degraded 100-Gb/s signal with factor of 9.2 dB; (b) logic-preserved signal with factor of 12.3 dB at SOA 1 output; (c) logic-inverted signal at SOA 1 output; (d) 2R regenerated with factor of 19.6 dB at SOA 2 output
1 Li J, Schubert C, Derksen R H, Makon R E, Hurm V, Djupsj?backa A, Chacinski M, Westergren U, Bach H G, Mekonnen G G, Steffan A G, Driad R, Walcher H, Rosenzweig J. 112 Gb/s field trial of complete ETDM system based on monolithically integrated transmitter & receiver modules for use in 100 GbE. In: Proceedings of 36th European Conference on Optical Communication (ECOC) . 2010, P4.03
2 Roberts K, O'Sullivan M, Wu K T, Sun H, Awadalla A, Krause D J, Laperle C. Performance of dual-polarization QPSK for optical transport systems. Journal of Lightwave Technology , 2009, 27(16): 3546–3559
doi: 10.1109/JLT.2009.2022484
3 Idler W, Lach E, Junginger B, Kuebart W, Schuh K, Klekamp A, Werner D, Steffan A G, Schippel A, Schneiders M, Vorbeck S, Braun R. WDM field trial over 764 km SSMF with 16 ′ 112 Gb/s NRZ-DQPSK co-propagating with 10.7 Gb/s NRZ. In: Proceedings of 36th European Conference on Optical Communication (ECOC) . 2010, We.8.C.5
4 Feiste U, Ludwig R, Schubert C, Berger J, Schmidt C, Weber H G, Schmauss B, Munk A, Buchold B, Briggmann D, Kueppers F, Rumpf F. 160 Gbit/s transmission over 116 km field-installed fibre using 160 Gbit/s OTDM and 40 Gbit/s ETDM. Electronics Letters , 2001, 37(7): 443–445
doi: 10.1049/el:20010283
5 Mulvd H C H, Tangdiongga E, Raz O, Herrera J, de Waardt H, Dorren H J S. 640 Gbit/s OTDM lab-transmission and 320 Gbit/s field-transmission with SOA-based clock recovery. In: Proceeding of Optical Fiber Communication Conference, OFC 2008 . 2008, OWS2
6 Nakazawa M, Yamamoto T, Tamura K R. 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator. Electronics Letters , 2000, 36(24): 2027–2029
doi: 10.1049/el:20001391
7 Galili M, Mulvad H C H, Oxenlowe L K, Hu H, Palushani E, Clausen A T, Jeppesen P. Generation and detection of 2.56 Tbit/s OTDM data using DPSK and polarisation multiplexing. In: Proceeding of Optical Fiber Communication Conference, OFC 2010 . 2010, OThV2
8 Mulvad H C H, Galili M, Oxenl?we L K, Hu H, Clausen A T, Jensen J B, Peucheret C, Jeppesen P. Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. Optics Express , 2010, 18(2): 1438–1443
doi: 10.1364/OE.18.001438
9 Wang J, Huang H, Wang X, Yang J Y, Willner A E. Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF. Optics Express , 2011, 19(19): 18246–18252
doi: 10.1364/OE.19.018246 pmid:21935191
10 Bogoni A, Wu X, Nuccio S R, Willner A E. 640 Gb/s all-optical regenerator based on a periodically poled lithium niobate waveguide. Journal of Lightwave Technology , 2012, 30(12): 1829–1834
doi: 10.1109/JLT.2012.2189552
11 Ji H, Galili M, Hu H, Pu M H, Oxenl?we L K, Yvind K, Hvam J M, Jeppesen P. 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photonics Technology Letters , 2010, 22(23): 1762–1764
doi: 10.1109/LPT.2010.2084566
12 Van E, Luan F, Van Erps J ü, Luan F, Pelusi M D, Iredale T, Madden S, Choi D Y, Bulla D A, Luther-Davies B, Thienpont H, Eggleton B J. High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides. Journal of Lightwave Technology , 2010, 28(2): 209–215
doi: 10.1109/JLT.2009.2035338
13 Kim S, Kim J H, Yu B G, Byun Y T, Jeon Y M, Lee S, Woo D H, Kim S H. All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electronics Letters , 2005, 41(18): 1027–1028
doi: 10.1049/el:20052320
14 Huo L, Yang Y F, Nan Y B, Lou C Y, Gao Y Z. A study on the wavelength conversion and all-optical 3R regeneration using cross-absorption modulation in a bulk electroabsorption modulator. Journal of Lightwave Technology , 2006, 24(8): 3035–3044
doi: 10.1109/JLT.2006.878054
15 Zhou E, Ohman F, Cheng C, Zhang X, Hong W, M?rk J, Huang D. Reduction of patterning effects in SOA-based wavelength converters by combining cross-gain and cross-absorption modulation. Opt Exp , 2008, 16(26): 21522–21528
doi: 10.1364/OE.16.021522 pmid:19104582
16 Singh S, Lovkesh. Ultrahigh speed optical processing logic based on an SOA-MZI. IEEE Journal on Selected Topics in Quantum Electronics , 2012, 18(2): 970–977
doi: 10.1109/JSTQE.2011.2155623
17 Yang X, Manning R, Hu W. Simple 40 Gbit/s all-optical XOR gate. Electronics Letters , 2010, 46(3): 222
doi: 10.1049/el.2010.3039
18 Liu Y, Herrera J, Raz O, Tangdiongga E, Ramos F, Marti J, de Waardt H, Koonen A M J, Khoe G D, Dorren H J S. 160 Gbit/s all-optical SOA-based wavelength conversion and error-free transmission through two 50 km fibre links. Electronics Letters , 2007, 43(25): 1447–1449
doi: 10.1049/el:20072871
19 Liu Y, Tangdiongga E, Li Z, de Waardt H, Koonen A M J, Khoe G D, Shu X, Bennion I, Dorren H J S. Errior-free 320-Gb/s all-omtical wavelength conversion using a single semiconductor optical amplifier. Journal of Lightwave Technology , 2007, 25(1): 103–108
doi: 10.1109/JLT.2006.888484
20 Matsuura M, Raz O, Gomez-Agis F, Calabretta N, Dorren H J S. Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier. Optics Express , 2011, 19(26): 551–559
21 Cleary C S, Power M J, Schneider S, Webb R P, Manning R J. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA. Optics Express , 2010, 18(25): 25726–25737
doi: 10.1364/OE.18.025726 pmid:21164918
22 Chen J, Lou C, Huo L, Lu D. 1.4 ps pedestal-free low timing jitter 10 GHz pulse source using commercial cascaded LiNbO3 modulators and fiber-based compressor. Applied Optics , 2011, 50(14): 1979–1983
doi: 10.1364/AO.50.001979 pmid:21556097
23 Yang Y F, Lou C Y, Gao Y Z. Novel ultrashort pulse source for measuring the transmission window in an electroabsorption modulator. Optical Engineering , 2007, 46(5): 055004
doi: 10.1117/1.2740767
24 Huo L, Lou C Y, Gao Y Z. Generation of 10 GHz 2 ps short laser pulses using an electroabsorption modulator and two-stage compression. Chinese Physics Letters , 2005, 22(2): 353–356
doi: 10.1088/0256-307X/22/2/024
25 Huo L, Dong Y, Lou C Y, Gao Y Z. Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation. IEEE Photonics Technology Letters , 2003, 15(7): 981–983
doi: 10.1109/LPT.2003.813390
26 Hu H, Yu J L, Zhang L T, Zhang A X, Wang W R, Wang J, Jiang Y, Yang E Z. 40-Gb/s all-optical serial-to-parallel conversion based on a single SOA. IEEE Photonics Technology Letters , 2008, 20(13): 1181–1183
doi: 10.1109/LPT.2008.925487
27 Wang T, Lou C Y, Huo L, Wang Z X, Gao Y Z. A simple method for clock recovery. Optics & Laser Technology , 2004, 36(8): 613–616
28 Contestabile G, D’Errico A, Presi M, Ciaramella E. 40-GHz all-optical clock extraction using a semiconductor-assisted Fabry-Perot filter. IEEE Photonics Technology Letters , 2004, 16(11): 2523–2525
doi: 10.1109/LPT.2004.835608
29 Kim I, Kim C, Li G F, LiKamWa P, Hong J. 180-GHz clock recovery using a multisection gain-coupled distributed feedback laser. IEEE Photonics Technology Letters , 2005, 17(6): 1295–1297
doi: 10.1109/LPT.2005.846495
30 Costa e Silva M, Lagrost A, Bramerie L, Gay M, Besnard P, Joindot M, Simon J C, Shen A, Duan G H. Up to 425 GHz all optical frequency down-conversion clock recovery based on quantum dash Fabry-Perot mode-locked laser. In: Proceeding of Optical Fiber Communication Conference, OFC 2010 . 2010, PDPC4
31 Contestabile G, Proietti R, Calabretta N, Ciaramella E. Cross-gain compression in semiconductor optical amplifiers. Journal of Lightwave Technology , 2007, 25(3): 915–921
doi: 10.1109/JLT.2006.890441
32 Contestabile G, Proietti R, Presi M, Ciaramella E. 40 Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals. In: Proceeding of Optical Fiber Communication Conference, OFC 2008 . 2008, 2774–2776
33 Dong J J, Fu S N, Zhang X L, Shum P, Zhang L R, Huang D X. Analytical solution for SOA-based all-optical wavelength conversion using transient cross-phase modulation. IEEE Photonics Technology Letters , 2006, 18(24): 2554–2556
doi: 10.1109/LPT.2006.886864
Related articles from Frontiers Journals
[1] Xinliang ZHANG,Zhao WU. Linear optical signal processing with optical filters: a tutorial[J]. Front. Optoelectron., 2016, 9(3): 377-389.
[2] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[3] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[4] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[5] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[6] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[7] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
[8] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[9] Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
[10] Xiaofan ZHAO, Caiyun LOU, Yanming FENG. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer[J]. Front Optoelec Chin, 2011, 4(3): 308-314.
[11] Shangjian ZHANG, Lei XU, Yong LIU, Yongzhi LIU. In-band clock distribution concept for ultra-high bit rates OTDM system[J]. Front Optoelec Chin, 2010, 3(4): 343-346.
[12] Jing HUANG, Deming LIU. WDM PON using 10-Gb/s DPSK downstream and re-modulated 10-Gb/s OOK upstream based on SOA[J]. Front Optoelec Chin, 2010, 3(4): 339-342.
[13] Taorong GONG, Fengping YAN, Dan LU, Ming CHEN, Peng LIU, Peilin TAO, Muguang WANG, Tangjun LI, Shuisheng JIAN. 160-Gbit/s clock recovery using an electro-absorption modulator and 40-Gbit/s ETDM demultiplexer[J]. Front Optoelec Chin, 2009, 2(4): 389-392.
[14] Zigang DUAN, Wei SHI, Yan LI, Guangyue CHAI. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
[15] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed