Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2012, Vol. 5 Issue (4) : 457-464     DOI: 10.1007/s12200-012-0289-3
Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers
Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983963113, Iran
Download: PDF(601 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

To compensate for the loss of carrier density along the active region of quantum-dot semiconductor optical amplifiers (QD-SOAs), tapered structure of the waveguide is introduced. In this paper, a method for theoretically modeling of such devices is proposed, and according to that model different shapes of tapered waveguides are studied. This study is pivoted around the optical gain and cross-gain modulation (XGM) of the QD-SOA under investigation to show how altering the shape of the waveguide affects the main characteristics of the device. For doing so, the rate equation model has been employed and solved through finite difference method and MATLAB ODE. Through this, as long as monotonically increasing profiles for the width of the waveguide are used, the shape of the waveguide has a negligible effect on the gain which mainly depends on the width ratio of the waveguide output to its input. However, this carrier compensation has adverse effect on the XGM, where its efficiency rely on how the pump signal can effectively reduce carrier density and upset the gain.

Keywords tapered waveguide      cross-gain modulation (XGM)      quantum-dot (QD)      semiconductor optical amplifier (SOA)     
Corresponding Authors: ABEDI Kambiz,   
Issue Date: 05 December 2012
 Cite this article:   
Ehsan MOHADESRAD,Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
E-mail this article
E-mail Alert
Articles by authors
Kambiz ABEDI
Fig.1  Schematic diagram of QD-SOA
Fig.2  Energy band diagram of one layer of QDs schematically depicting energy gaps between CB and VB states []
L3 mmτ0R0.2 ns
W4 μmτ1R0.2 ns
Lw0.2 μmτwR0.2 ns
H2τ1,0n8 ps
?ω0max?0.962 eVτ2,1n2 ps
?ω1max?1.042 eVτ3,2n0.8 ps
?ω2max?1.122 eVτ0,1n80 ps
g0max14 cm-1τ1,2n20 ps
g1max20 cm-1τ2,3n8 ps
g2max?~0 cm-1τk+1,kp0.5 ps
α4 cm-1τk,k+1p0.74 ps
σj30 meVaj,in,p1
q1.602 × 10-19 Caiin,p1
υg8.45 × 109 cm/sciip0.2
NQ2.5 × 1017 cm-3c1,0nn27
NWL5.4 × 1017 cm-3c1,0np175
Dn879 cm2/sc2,1nn7
DP13.7 cm2/sc1,0np35
Tab.1  Physical parameters of QD-SOA under investigation []
Fig.3  Schematic of QD-SOA, comprised of extremely short sections
Fig.4  (Color online) (a) Conventional straight waveguide structure; (b) tapered waveguide structure
Fig.5  (Color online) (a) Exaggerated tapered structure; (b) tapered structure modeled as conventional QD-SOA with increasing QD density
Fig.6  (Color online) Schematic diagram of QD-SOA with coupling device to back to initial width
square rootJ(z)=az+b2a,b
exponentialJ(z)=b exp?(az)a,b
Tab.2  Shapes of tapered wave-guide
Fig.7  (Color online) Tapered QD-SOA modal gain for different width ratios at the end of device
Fig.8  (Color online) Tapered QD-SOA output signals photon densities for different width ratios at the end of device
Fig.9  (Color online) Tapered QD-SOA modal gain for different shapes of waveguide with width ratio of 2 and 10 at the end of device
Fig.10  (Color online) XGM efficiency (a) and normalized XGM efficiency (b)
1 Rostami A, Baghban H, Maram R. Nanostructure Semiconductor Optical Amplifiers: Building Blocks for All-Optical Processing. New York: Springer Heidelberg, 2011
2 Akiyama T, Sugawara M, Arakawa Y. Quantum-dot semiconductor optical amplifiers. Proceedings of the IEEE , 2007, 95(9): 1757-1766
doi: 10.1109/JPROC.2007.900899
3 Bilenca A, Eisenstein G. On the noise properties of linear and nonlinear quantum-dot semiconductor optical amplifiers: the impact of inhomogeneously broadened gain and fast carrier dynamics. IEEE Journal of Quantum Electronics , 2004, 40(6): 690-702
doi: 10.1109/JQE.2004.828260
4 Akiyama T, Hatori N, Nakata Y, Ebe H, Sugawara M. Pattern-effect-free semiconductor optical amplifier achieved using quantum dots. Electronics Letters , 2002, 38(19): 1139-1140
doi: 10.1049/el:20020716
5 Connelly M J. Semiconductor Optical Amplifiers. Boston: Kluwer Academic Publishers, 2002
6 Ghafouri-Shiraz H. The Principles of Semiconductor Laser Diodes and Amplifiers: Analysis and Transmission Line Laser Modeling. London: Imperial College Press, 2004
7 Qasaimeh O. Effect of doping on the optical characteristics of quantum-dot semiconductor optical amplifiers. Lightwave Technology Journalism , 2009, 27(12): 1978-1984
8 Taleb H, Abedi K, Golmohammadi S. Operation of quantum-dot semiconductor optical amplifiers under nonuniform current injection. Applied Optics , 2011, 50(5): 608-617
doi: 10.1364/AO.50.000608 pmid:21343980
9 Yi Y, Lirong H, Meng X, Peng T, Dexiu H. Enhancement of gain recovery rate and cross-gain modulation bandwidth using a two-electrode quantum-dot semiconductor optical amplifier. Journal of the Optical Society of America B, Optical Physics , 2010, 27(11): 2211-2217
doi: 10.1364/JOSAB.27.002211
10 Carney K, Latkowski S, Maldonado-Basilio R, Landais P, Lennox R, Bradley A L. Characterization of a multi-electrode bulk-SOA for low NF in-line amplification in passive optical networks. In: Proceedings of the 12th International Conference on Transparent Optical Networks (ICTON) , 2010, 1-4
11 Fiore A, Markus A. Differential gain and gain compression in quantum-dot lasers. IEEE Journal of Quantum Electronics, 2007, 43(4): 287-294
12 Qasaimeh O R. Ultra-fast gain recovery and compression due to auger-assisted relaxation in quantum dot semiconductor optical amplifiers. Lightwave Technology Journalism , 2009, 27(13): 2530-2536
13 Kim J, Meuer C, Bimberg D, Eisenstein G. Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics , 2010, 46(11): 1670-1680
doi: 10.1109/JQE.2010.2058793
14 Xiao J L, Yang Y D, Huang Y Z. Investigation of gain recovery for InAs/GaAs quantum dot semiconductor optical amplifiers by rate equation simulation. Optical and Quantum Electronics , 2009, 41(8): 613-626
doi: 10.1007/s11082-010-9368-0
15 Bendelli G, Komori K, Arai S. Gain saturation and propagation characteristics of index-guided tapered-waveguide traveling-wave semiconductor laser amplifiers (TTW-SLAs). IEEE Journal of Quantum Electronics , 1992, 28(2): 447-458
doi: 10.1109/3.123272
Related articles from Frontiers Journals
[1] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[2] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[3] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[4] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[5] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[6] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
[7] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[8] Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
[9] Jing HUANG, Deming LIU. WDM PON using 10-Gb/s DPSK downstream and re-modulated 10-Gb/s OOK upstream based on SOA[J]. Front Optoelec Chin, 2010, 3(4): 339-342.
[10] Zigang DUAN, Wei SHI, Yan LI, Guangyue CHAI. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
[11] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
Full text