Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2012, Vol. 5 Issue (3) : 248-255     DOI: 10.1007/s12200-012-0267-9
Polarization properties in helical metamaterials
Zhenyu YANG1(), Peng ZHANG1, Peiyuan XIE2, Lin WU1, Zeqin LU1, Ming ZHAO1
1. Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Hunan Electric Power Company Dispatches & Communication Center, Changsha 410007, China
Download: PDF(843 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

In the last few years, there has been growing interest in the research of helical metamaterials due to the advantages of giant circular dichroism, broad operation bands, and compact structures. However, most of the researches were in the cases of single-, circular-helical metamaterials, and normal incidences. In this paper, we reviewed recent simulation works in the helical metamaterials with the finite-difference time-domain (FDTD) method, which mainly included the optical performances of double-, three-, four-helical metamaterials, performances of elliptical-helical metamaterials, and the polarization properties under the condition of oblique incidences. The results demonstrate that the double-helical metamaterials have operation bands more than 50%, which is broader than those of the single-helical structures. But both of them have low signal-to-noise ratios about 10 dB. The three- and four-helical metamaterials have significant improvement in overall performance. For elliptical-helixes, simulation results suggest that the transmitted light can have elliptical polarization states. On the condition of oblique incidences, the novel property of tunable polarization states occurred in the helical metamaterials, which could have much broader potential applications such as tunable optical polarizers, tunable beam splitters, and tunable optical attenuators.

Keywords finite-difference time-domain (FDTD) method      polarization      chiral media      helical metamaterials     
Corresponding Authors: YANG Zhenyu,   
Issue Date: 05 September 2012
 Cite this article:   
Zeqin LU,Ming ZHAO,Zhenyu YANG, et al. Polarization properties in helical metamaterials[J]. Front Optoelec, 2012, 5(3): 248-255.
E-mail this article
E-mail Alert
Articles by authors
Zeqin LU
Zhenyu YANG
Peiyuan XIE
Lin WU
Fig.1  Schematic diagrams of single-helical metamaterials
Fig.2  Schematic diagrams of double-helical metamaterials
Fig.3  Comparison of optical performances between single- and double-helical metamaterials. (a) and (b) Au single- and double-helix; (c) and (d) Al single- and double-helix
operation regions/μmaverage transmittances of RCP light/%average extinction ratios
Tab.1  Comparison of optical performances between single- and double-helical metamaterials
Fig.4  Schematic diagrams of (a) three- and (b) four-helical metamaterials
Fig.5  Optical performances of LCP incident light, and transmitted lights through single-, double-, three-, and four-helix
Fig.6  (a) Optical performance of elliptically single-helical metamaterials; (b) polarization state of transmitted LEP light represented on Poincaré sphere
WL/μmcoordinatesARconversion of LEP
1.07(-0.58, 0.36,-0.72)1.954.1%
0.93(-0.63, 0.31,-0.70)2.123.6%
0.83(-0.62, 0.33,-0.70)2.094.4%
0.75(-0.58, 0.31,-0.74)1.953.6%
WL: Wavelength, AR: axial ratio
Tab.2  Polarization states of transmitted LEP light
angle of incidence/(°)axial ratiotransmittances of LCP light/%extinction ratiodiagrams
201∶0.93575.04∶1Fig.7(a), “” in Fig. 7(f)
101∶0.80656.78∶1Fig.7(b), “” in Fig. 7(f)
01∶0.67697.58∶1Fig. 7(c), “” in Fig. 7(f)
-101∶0.66687.71∶1Fig. 7(d), “” in Fig. 7(f)
-201∶0.59626.22∶1Fig. 7(e), “” in Fig. 7(f)
DW= 30 m, NH= 3, SG= 200 nm, LH= 200 nm, DH= 100 nm.
Tab.3  Parameters and simulation results with different incident angles
Fig.7  Optical performances of the helical metamaterials with different incident angles. (a)-(e) are for the incident angles of 20°, 10°, 0°, -10°, and -20°, respectively; (f) is comparison of the transmitted light’s polarization states (represented on the Poincaré sphere). The blue, green, red, cyan, and pink points refer to the incident angles of 20°, 10°, 0°, -10°, and -20°, respectively
1 Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters , 2000, 85(18): 3966-3969
doi: 10.1103/PhysRevLett.85.3966 pmid:11041972
2 Alù A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2005, 72(1 Pt 2): 016623
doi: 10.1103/PhysRevE.72.016623 pmid:16090123
3 Leonhardt U. Optical conformal mapping. Science , 2006, 312(5781): 1777-1780
doi: 10.1126/science.1126493 pmid:16728596
4 Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science , 2006, 312(5781): 1780-1782
doi: 10.1126/science.1125907 pmid:16728597
5 Monat C, Grillet C, Corcoran B, Moss D J, Eggleton B J, White T P, Krauss T F. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. Optics Express , 2010, 18(7): 6831-6840
doi: 10.1364/OE.18.006831 pmid:20389702
6 Alu A, Engheta N. Guided modes in a waveguide filled with a pair of singlenegative (SNG) double-negative (DNG), and/or double-positive (DPS) layers. IEEE Transactions on Microwave Theory and Techniques , 2004, 52(1): 199-210
doi: 10.1109/TMTT.2003.821274
7 Ma Y, Li X, Yu H, Tong L, Gu Y, Gong Q. Direct measurement of propagation losses in silver nanowires. Optics Letters , 2010, 35(8): 1160-1162
doi: 10.1364/OL.35.001160 pmid:20410952
8 Wang P, Gu F, Zhang L, Tong L. Polymer microfiber rings for high-sensitivity optical humidity sensing. Applied Optics , 2011, 50(31): G7-G10
doi: 10.1364/AO.50.0000G7 pmid:22086051
9 Meng C, Xiao Y, Wang P, Zhang L, Liu Y, Tong L. Quantum-dot-doped polymer nanofibers for optical sensing. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(33): 3770-3774
10 Wu D K C, Kuhlmey B T, Eggleton B J. Ultrasensitive photonic crystal fiber refractive index sensor. Optics Letters , 2009, 34(3): 322-324
doi: 10.1364/OL.34.000322 pmid:19183645
11 Wiltshire M C K, Pendry J B, Young I R, Larkman D J, Gilderdale D J, Hajnal J V. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science , 2001, 291(5505): 849-851
doi: 10.1126/science.291.5505.849 pmid:11157159
12 Wang X, Venugopal G, Zeng J, Chen Y, Lee D H, Litchinitser N M, Cartwright A N. Optical fiber metamagnetics. Optics Express , 2011, 19(21): 19813-19821
doi: 10.1364/OE.19.019813 pmid:21996989
13 Liu H, Cao J X,.Zhu N, Liu N, Ameling R, Giessen H. Lagrange model for the chiral optical properties of stereometamaterials. Physical Review B: Condensed Matter and Materials Physics , 2010, 81(24): 241403
14 Li T Q, Liu H, Li T, Wang S M, Wang F M, Wu R X, Chen P, Zhu S N, Zhang X. Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial. Applied Physics Letters , 2008, 92(13): 131111
15 Liu N, Liu H, Zhu S N, Giessen H. Stereometamaterials. Nature Photonics , 2009, 3: 157-162
16 Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X. Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Physical Review B: Condensed Matter and Materials Physics , 2007, 76(7): 073101
17 Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science , 2009, 325(5947): 1513-1515
doi: 10.1126/science.1177031 pmid:19696310
18 Gansel J K, Wegener M, Burger S, Linden S. Gold helix photonic metamaterials: a numerical parameter study. Optics Express , 2010, 18(2): 1059-1069
doi: 10.1364/OE.18.001059 pmid:20173927
19 Gansel J K, Latzel M, Fr?lich A, Kaschke J, Thiel M, Wegener M. Tapered gold-helix metamaterials as improved circular polarizers. Applied Physics Letters , 2012, 100(10): 101109
20 Wu C, Li H Q, Wei Z Y, Yu X T, Chan C T. Theory and experimental realization of negative refraction in a metallic helix array. Physical Review Letters , 2010, 105(24): 247401
21 Wu C, Li H Q, Yu X, Li F, Chen H. Metallic helix array as a broadband wave plate. Physical Review Letters, 2011, 107(17): 177401
22 Lub J, van de Witte P, Doornkamp C, Vogels J P A, Wegh R T. Stable photopatterned cholesteric layers made by photoisomerization and subsequent photopolymerization for use as color filters in liquid-crystal displays. Advanced Materials (Deerfield Beach, Fla.) , 2003, 15(17): 1420-1425
doi: 10.1002/adma.200305125
23 De Filpo G, Nicoletta F P, Chidichimo G. Cholesteric emulsions for colored displays. Advanced Materials (Deerfield Beach, Fla.) , 2005, 17(9): 1150-1152
doi: 10.1002/adma.200401912
24 Yoshioka T, Ogata T, Nonaka T, Moritsugu M, Kim S N, Kurihara S. Reversible-photon-mode full-color display by means of photochemical modulation of a helically cholesteric structure. Advanced Materials (Deerfield Beach, Fla.) , 2005, 17(10): 1226-1229
doi: 10.1002/adma.200401429
25 Loksztejn A, Dzwolak W. Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy. Journal of Molecular Biology , 2010, 395(3): 643-655
doi: 10.1016/j.jmb.2009.10.065 pmid:19891974
26 Claborn K, Puklin-Faucher E, Kurimoto M, Kaminsky W, Kahr B. Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone. Journal of the American Chemical Society , 2003, 125(48): 14825-14831
doi: 10.1021/ja035644w pmid:14640658
27 Hecht E. Optics. 4th ed. San Francisco: Addison-Wesley , 2002, 357-358
28 Hikmet R A M, Kemperman H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature , 1998, 392(6675): 476-479
doi: 10.1038/33110
29 Mitov M, Dessaud N. Going beyond the reflectance limit of cholesteric liquid crystals. Nature Materials , 2006, 5(5): 361-364
doi: 10.1038/nmat1619 pmid:16604079
30 Xiao J M, Cao H, He W L, Ma Z, Geng J, Wang L, Wang G, Yang H. Wide-band reflective polarizers from cholesteric liquid crystals with stable optical properties. Journal of Applied Polymer Science , 2007, 105(5): 2973-2977
doi: 10.1002/app.26561
31 Ha N Y, Ohtsuka Y, Jeong S M, Nishimura S, Suzaki G, Takanishi Y, Ishikawa K, Takezoe H. Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals. Nature Materials , 2008, 7(1): 43-47
doi: 10.1038/nmat2045 pmid:17994028
32 Yang Z Y, Zhao M, Lu Y F. Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials. Journal of Lightwave Technology , 2010, 28(21): 3055-3061
33 Yang Z Y, Zhao M, Lu P X, Lu Y F. Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures. Optics Letters , 2010, 35(15): 2588-2590
doi: 10.1364/OL.35.002588 pmid:20680067
34 Yang Z Y, Zhao M, Lu P X. How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials? Optics Express , 2011, 19(5): 4255-4260
doi: 10.1364/OE.19.004255 pmid:21369255
35 Wu L, Yang Z, Zhao M, Yu Y, Li S, Zhang Q, Yuan X. Polarization characteristics of the metallic structure with elliptically helical metamaterials. Optics Express , 2011, 19(18): 17539-17545
doi: 10.1364/OE.19.017539 pmid:21935120
36 Wu L, Yang Z, Zhao M, Zhang P, Lu Z, Yu Y, Li S, Yuan X. What makes single-helical metamaterials generate “pure” circularly polarized light? Optics Express , 2012, 20(2): 1552-1560
doi: 10.1364/OE.20.001552 pmid:22274498
37 Berenger J P. A perfectly matched layer for the absorption of electromagnetic-waves. Journal of Computational Physics , 1994, 114(2): 185-200
doi: 10.1006/jcph.1994.1159
38 Harms P, Mittra R, Ko W. Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures. IEEE Transactions on Antennas and Propagation , 1994, 42(9): 1317-1324
doi: 10.1109/8.318653
39 Rakic A D, Djurisic A B, Elazar J M, Majewski M L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied Optics , 1998, 37(22): 5271-5283
doi: 10.1364/AO.37.005271 pmid:18286006
40 Liu H, Liu Y M, Li T, Wang S M, Zhu S N, Zhang X. Coupled magnetic plasmons in metamaterials. Physica Status Solidi B , 2009, 246(7): 1397-1406
41 Liu H, Li T, Wang S M, Zhu S N. Hybridization effect in coupled metamaterials. Frontiers of Physics in China , 2010, 5(3): 277-290
42 Rukhlenko I D, Dissanayake C, Premaratne M. Visualization of electromagnetic-wave polarization evolution using the Poincaré sphere. Optics Letters , 2010, 35(13): 2221-2223
doi: 10.1364/OL.35.002221 pmid:20596200
Related articles from Frontiers Journals
[1] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[2] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[3] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[4] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[5] Mikhail ESAULKOV,Olga KOSAREVA,Vladimir MAKAROV,Nikolay PANOV,Alexander SHKURINOV. Simultaneous generation of nonlinear optical harmonics and terahertz radiation in air: polarization discrimination of various nonlinear contributions[J]. Front. Optoelectron., 2015, 8(1): 73-80.
[6] Wu TIAN, Xiong HUI, Yang LI, Jiangnan DAI, Yanyan FANG, Zhihao WU, Changqing CHEN. Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n- to p-layers[J]. Front Optoelec, 2013, 6(4): 429-434.
[7] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[8] Bin WEI, Zhengmao WU, Tao DENG, Guangqiong XIA. Nonlinear dynamics of 1550 nm VCSELs subject to polarization-preserved optical feedback and orthogonal optical injection[J]. Front Optoelec, 2013, 6(3): 243-250.
[9] Thomas G. BROWN, Amber M. BECKLEY. Stress engineering and the applications of inhomogeneously polarized optical fields[J]. Front Optoelec, 2013, 6(1): 89-96.
[10] Jian LI, Aiying YANG, Lin ZUO, Junsen LAI, Yunan SUN. Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser[J]. Front Optoelec, 2012, 5(2): 208-213.
[11] Chucai GUO, Yongzhen HUANG, Yuede YANG, Xiaomeng LV, Qifeng YAO. Design of unidirectional emission silicon/III-V laser for on-chip interconnects[J]. Front Optoelec, 2012, 5(1): 94-98.
[12] Danhua WU, Xin SUI, Junbo YANG, Zhiping ZHOU. Binary blazed grating-based polarization-independent filter on silicon on insulator[J]. Front Optoelec, 2012, 5(1): 78-81.
[13] Shijuan WU, Baojian WU, Kun QIU, Chongzhen LI. Simulation model of magneto-optic fiber Bragg gratings and its applications in Sagnac interferometers[J]. Front Optoelec Chin, 2010, 3(4): 359-363.
[14] Xuguo ZHANG, Yuesong JIANG, Yiming ZHAO. Targets detection and discrimination using laser polarimetric imaging[J]. Front Optoelec Chin, 2009, 2(4): 419-424.
[15] Changkui HU, Deming LIU. Polarization characteristics of subwavelength aluminum wire grating in near infrared[J]. Front Optoelec Chin, 2009, 2(2): 187-191.
Full text