Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (1) : 108-113     DOI: 10.1007/s12200-011-0203-4
Flexible solar cells based on PCBM/P3HT heterojunction
Gentian YUE, Jihuai WU(), Yaoming XIAO, Jianming LIN, Miaoliang HUANG
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou 362021, China
Download: PDF(235 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) / poly (3-hexylthiophene) (P3HT) heterojunction has not only the absorption in ultraviolet light for PCBM, but also the absorption in visible light for P3HT, which widens the incident light harvest range, improving the photoelectrical response of hybrid solar cell effectively. Using conducting polymers blend heterojunction consisting of C60 derivatives PCBM and P3HT as charge carrier transferring medium to replaceI3-/I- redox electrolyte and dye, a novel flexible solar cell was fabricated in this study. The influence of PCBM/P3HT mass ratio on the photovoltaic performance of the solar cell was also studied. Under a simulated solar irradiation of 100 mW·cm-2, the flexible solar cell achieved a light-to-electric energy conversion efficiency of 1.04%, an open circuit voltage of 0.86 V, short circuit current density of 2.6 mA·cm-2 and fill factor (FF) of 0.46.

Keywords flexible solar cell      heterojunction      [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)      poly (3-hexylthiophene) (P3HT)     
Corresponding Authors: WU Jihuai,   
Issue Date: 05 March 2011
 Cite this article:   
Jianming LIN,Miaoliang HUANG,Gentian YUE, et al. Flexible solar cells based on PCBM/P3HT heterojunction[J]. Front Optoelec Chin, 2011, 4(1): 108-113.
E-mail this article
E-mail Alert
Articles by authors
Jianming LIN
Miaoliang HUANG
Gentian YUE
Jihuai WU
Yaoming XIAO
Fig.1  UV-Vis absorption spectra of PCBM, P3HT, and PCBM/P3HT hybrid
Fig.1  UV-Vis absorption spectra of PCBM, P3HT, and PCBM/P3HT hybrid
Fig.2  PL spectra excited at 430 nm. (a) PCBM, P3HT and PCBM/P3HT; (b) PCBM/P3HT with different ratios
Fig.2  PL spectra excited at 430 nm. (a) PCBM, P3HT and PCBM/P3HT; (b) PCBM/P3HT with different ratios
Fig.3  IPCE of solar cells with PCBM, P3HT and PCBM/P3HT
Fig.3  IPCE of solar cells with PCBM, P3HT and PCBM/P3HT
Fig.4  - curves for solar cells with different PCBM/P3HT ratios
Fig.4  - curves for solar cells with different PCBM/P3HT ratios
PCBM/P3HT ratiosVOC/VJSC/(mA·cm-2)FF/%η/%
Tab.1  Influence of PCBM/P3HT ratios on photoelectric properties of solar cells
solar cellsVOC/VJSC/(mA·cm-2)FF/%η/%
FTO/glass substrate with dye0.875.520.643.09
FTO/glass substrate without dye0.855.470.642.97
ITO/PEN substrate with dye0.873.020.541.43
ITO/PEN substrate without dye0.872.600.461.04
Tab.2  Influence of substrate and dye on photovoltaic properties of solar cells
1 O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740
doi: 10.1038/353737a0
2 Gr?tzel M. Photoelectrochemical cells. Nature , 2001, 414(6861): 338–344
doi: 10.1038/35104607 pmid:11713540
3 Gr?tzel M. Recent advances in sensitized mesoscopic solar cells. Accounts of Chemical Research , 2009, 42(11): 1788–1798
doi: 10.1021/ar900141y pmid:19715294
4 Gr?tzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry , 2005, 44(20): 6841–6851
doi: 10.1021/ic0508371 pmid:16180840
5 Lindstr?m H, Holmberg A, Magnusson E, Malmqvist L, Hagfeldt A. A new method to make dye-sensitized nanocrystalline solar cells at room temperature. Journal of Photochemistry and Photobiology A Chemistry , 2001, 145(1-2): 107–112
doi: 10.1016/S1010-6030(01)00564-0
6 Longo C, Freitas J, DePaoli M. Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte. Journal of Photochemistry and Photobiology A Chemistry , 2003, 159(1): 33–39
doi: 10.1016/S1010-6030(03)00106-0
7 Wu J H, Lan Z, Hao S C, Li P J, Huang M L, Fang L Q, Huang Y F. Progress on the electrolytes for dye-sensitized solar cells. Pure and Applied Chemistry , 2008, 80(11): 2241–2258
doi: 10.1351/pac200880112241
8 Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science , 2002, 295(5564): 2425–2427
doi: 10.1126/science.1069156 pmid:11923531
9 Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells. Advanced Functional Materials , 2001, 11(1): 15–26
doi: 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
10 Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science , 1995, 270(5243): 1789–1791
doi: 10.1126/science.270.5243.1789
11 Roman L S, Andersson M R, Yohanms T, Inganas O. Photodiode performance and nanostructure of polythiophene/C60 blends. Advanced Materials (Deerfield Beach, Fla.) , 1997, 9(15): 1164–1168
doi: 10.1002/adma.19970091508
12 Zhang D, Downing J A, Knorr F J, McHale J L. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion. Journal of Physical Chemistry B , 2006, 110(43): 21890–21898
doi: 10.1021/jp0640880 pmid:17064155
13 Wu J H, Lan Z, Lin J M, Huang M L, Hao S C, Sato T, Yin S. A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2007, 19(22): 4006–4011
doi: 10.1002/adma.200602886
14 Wu J H, Hao S C, Lan Z, Lin J M, Huang M L, Huang Y F, Li P J, Yin S, Sato T. An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%. Journal of the American Chemical Society , 2008, 130(35): 11568–11569
doi: 10.1021/ja802158q pmid:18693733
15 Gutierrez T, Zumeta I, Vigil E, Hernández M A, Domènecha X, Ayllón J A. New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation. Journal of Photochemistry and Photobiology A Chemistry , 2005, 175(2-3): 165–171
doi: 10.1016/j.jphotochem.2005.04.031
16 Nemoto J, Sakata M, Hoshi T, Uenoa H, Kaneko M. All-plastic dye-sensitized solar cell using a polysaccharide film containing excess redox electrolyte solution. Journal of Electroanalytical Chemistry , 2007, 599(1): 23–30
doi: 10.1016/j.jelechem.2006.08.011
17 Gr?tzel M. Perspectives for dye-sensitized nanocrystalline solar cells. Progress in Photovoltaics , 2000, 8(1): 171–185
doi: 10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
18 Nazeeruddin M K, Péchy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G B, Bignozzi C A, Gr?tzel M. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. Journal of the American Chemical Society , 2001, 123(8): 1613–1624
doi: 10.1021/ja003299u pmid:11456760
19 Ferber J, Stangl R, Luther J. An electrical model of the dye-sensitized solar cell. Solar Energy Materials and Solar Cells , 1998, 53(1-2): 29–54
doi: 10.1016/S0927-0248(98)00005-1
20 Oku T, Nagaoka S, Suzuki A, Kikuchia K, Hayashib V, Inukaib H, Sakuragib H, Soga T. Formation and characterization of polymer/fullerene bulk heterojunction solar cells. Journal of Physics and Chemistry of Solids , 2008, 69(5-6): 1276–1279
doi: 10.1016/j.jpcs.2007.10.117
21 Wu J H, Yue G T, Xiao Y M, Ye H, Lin J, Huang M L. Application of a polymer heterojunction in dye-sensitized solar cells. Electrochimica Acta , 2010, 55(20): 5798–5802
doi: 10.1016/j.electacta.2010.05.025
22 Al-Ibrahim M, Ambacher O, Sensfuss S, Gobsch G. Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene. Applied Physics Letters , 2005, 86(20): 201120
doi: 10.1063/1.1929875
23 Senadeera G, Kitamura T, Wada Y, Yanagida S. Photosensitization of nanocrystalline TiO2 films by a polymer with two carboxylic groups, poly (3-thiophenemalonic acid). Solar Energy Materials and Solar Cells , 2005, 88(3): 315–322
doi: 10.1016/j.solmat.2005.03.011
24 Lee J, Kim W, Lee H, Shin W S, Jin S H, Lee W K, Kim M R. Preparations and photovoltaic properties of dye-sensitized solar cells using thiophene-based copolymers as polymer electrolytes. Polymers for Advanced Technologies , 2006, 17(9-10): 709–714
doi: 10.1002/pat.766
25 Gebeyehu D, Brabec C J, Saricifci N S, Vangeneugden D, Kiebooms R, Vanderzande D, Kienbergerc F, Schindler H. Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials. Synthetic Metals , 2001, 125(3): 279–287
doi: 10.1016/S0379-6779(01)00395-2
26 Mwaura J K, Zhao X Y, Jiang H, Schanze K S, Reynolds J R. Spectral broadening in nanocrystalline TiO2 solar cells based on poly(p-phenylene ethynylene) and polythiophene sensitizers. Chemistry of Materials , 2006, 18(26): 6109–6111
doi: 10.1021/cm062198d
27 Yue G T, Wu J H, Xiao Y M, Ye H F, Xie G X, Lan Z, Li Q H, Huang M L, Lin J M. Flexible dye-sensitized solar cell based on PCBM/P3HT heterojunction. Chinese Science Bulletin , 2010, 55(9): 835–840 (in chinese)
Related articles from Frontiers Journals
[1] Kunpeng MA, Xiangbin ZENG, Qingsong LEI, Junming XUE, Yanzeng WANG, Chenguang ZHAO. Texturization and rounded process of silicon wafers for heterojunction with intrinsic thin-layer solar cells[J]. Front Optoelec, 2014, 7(1): 46-52.
[2] Gentian YUE, Jihuai WU, Jianming LIN, Miaoliang HUANG, Ying YAO, Leqing FAN, Yaoming XIAO. Application of Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate counter electrode in polymer heterojunction dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(4): 369-377.
[3] Wei CHEN, Shihe YANG. Dye-sensitized solar cells based on ZnO nanotetrapods[J]. Front Optoelec Chin, 2011, 4(1): 24-44.
[4] Chang-Qi MA. Conjugated dendritic oligothiophenes for solution-processed bulk heterojunction solar cells[J]. Front Optoelec Chin, 2011, 4(1): 12-23.
[5] Xianjie LI, Yonglin ZHAO, Daomin CAI, Qingming ZENG, Yunzhang PU, Yana GUO, Zhigong WANG, Rong WANG, Ming QI, Xiaojie CHEN, Anhuai XU. Monolithically integrated long wavelength photoreceiver OEIC based on InP/InGaAs HBT technology[J]. Front Optoelec Chin, 2008, 1(3-4): 336-340.
Full text