Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (4) : 378-381     DOI: 10.1007/s12200-011-0171-8
Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure
Yueyin SHAO1(), Yongqian WEI1, Zhenghua WANG2
1. Laboratory Material Supply Centre, Soochow University, Suzhou 215123, China; 2. Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
Download: PDF(259 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Silicon nanowires (SiNWs) with tens of micrometer in length have been synthesized and modified with Ag nanoparticles, which were confirmed by X-ray diffractometer (XRD), scanning electron microscopy and transmission electron microscopy. The Ag/Si nanostructure was employed to detect inorganic ions SO42- via surface-enhanced Raman scattering (SERS) with strong signals at low concentrations of 1×10-9 mol/L. This ultrasensitive method might be applied in other fields.

Keywords surface-enhanced Raman scattering (SERS)      silicon nanowires (SiNWs)      Ag nanoparticles      sulfate ions     
Corresponding Authors: SHAO Yueyin,   
Issue Date: 05 December 2011
 Cite this article:   
Yueyin SHAO,Yongqian WEI,Zhenghua WANG. Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure[J]. Front Optoelec Chin, 2011, 4(4): 378-381.
E-mail this article
E-mail Alert
Articles by authors
Yueyin SHAO
Yongqian WEI
Zhenghua WANG
Fig.1  XRD patterns of as-prepared products (a) and (b) products treated with HF and AgNO solutions successively
Fig.2  (a) SEM image shows as-prepared SiNWs in larger scale; (b) TEM image of a single Ag-modified SiNW with the average diameter of 30 nm; (c) HRTEM image showing Si (111) and Ag (111) crystal planes
Fig.3  SERS spectra of sodium sulfate solution (25 μL) using Ag-modified SiNWs as substrate at concentration of 1.0 × 10 and 1.0 × 10 mol/L, respectively
Fig.4  Solid surface reflectance spectra of (a) SiNWs and (b) Ag-modified SiNWs
Fig.5  HRTEM reveals Ag nanoparticle epitaxially grown on SiNW (marked with an arrow)
1 Collins P G, Zettl A, Bando H, Thess A, Smalley R E. Nanotube nanodevice. Science , 1997, 278(5335): 100–103
doi: 10.1126/science.278.5335.100
2 Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science , 2001, 291(5505): 851–853
doi: 10.1126/science.291.5505.851 pmid:11157160
3 Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P D. Nanoribbon waveguides for subwavelength photonics integration. Science , 2004, 305(5688): 1269–1273
doi: 10.1126/science.1100999 pmid:15333835
4 Korgel B A. Materials science. Self-assembled nanocoils. Science , 2004, 303(5662): 1308–1309
doi: 10.1126/science.1095178 pmid:14988542
5 Hu M S, Chen H L, Shen C H, Hong L S, Huang B R, Chen K H, Chen L C. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nature Materials , 2006, 5(2): 102–106
doi: 10.1038/nmat1564 pmid:16429142
6 Eisenstein M. Protein detection goes down to the wire. Nature Methods , 2005, 2(11): 804–805
doi: 10.1038/nmeth1105-804b pmid:16285036
7 Alivisatos P. The use of nanocrystals in biological detection. Nature Biotechnology , 2004, 22(1): 47–52
doi: 10.1038/nbt927 pmid:14704706
8 Ma D D D, Lee C S, Au F C K, Tong S Y, Lee S T. Small-diameter silicon nanowire surfaces. Science , 2003, 299(5614): 1874–1877
doi: 10.1126/science.1080313 pmid:12595610
9 Shao M W, Cheng L, Zhang X H, Ma D D D, Lee S T. Excellent photocatalysis of HF-treated silicon nanowires. Journal of the American Chemical Society , 2009, 131(49): 17738–17739
10 Cui Y, Duan X F, Hu J T, Lieber C M. Doping and electrical transport in silicon nanowires. Journal of Physical Chemistry B , 2000, 104(22): 5213–5216
doi: 10.1021/jp0009305
11 Chung S W, Yu J Y, Heath J R. Silicon nanowire devices.Applied Physics Letters , 2000, 76(15): 2068–2070
doi: 10.1063/1.126257
12 Li Z, Chen Y, Li X, Kamins T I, Nauka K, Williams R S. Sequence-specific label-free DNA sensors based on silicon nanowires.Nano Letters , 2004, 4(2): 245–247
doi: 10.1021/nl034958e
13 Zhou X T, Hu J Q, Li C P, Ma D D D, Lee C S, Lee S T. Silicon nanowires as chemical sensors. Chemical Physics Letters , 2003, 369(1–2): 220–224
doi: 10.1016/S0009-2614(02)02008-0
14 Shao M W, Shan Y Y, Wong N B, Lee S T. Silicon nanowire sensors for bioanalytical applications: Glucose and hydrogen peroxide detection. Advanced Functional Materials , 2005, 15(9): 1478– 1482
doi: 10.1002/adfm.200500080
15 Shao M W, Yao H, Zhang M L, Wong N B, Shan Y Y, Lee S T. Fabrication and application of long strands of silicon nanowires as sensors for bovine serum albumin detection. Applied Physics Letters , 2005, 87(18): 183106
doi: 10.1063/1.2123393
16 Lyon L A, Keating C D, Fox A P, Baker B E, He L, Nicewarner S R, Mulvaney S P, Natan M J. Raman spectroscopy. Analytical Chemistry , 1998, 70(12): 341–362
doi: 10.1021/a1980021p pmid:9640107
17 Mulvaney S P, Keating C D. Raman spectroscopy. Analytical Chemistry , 2000, 72(12): 145–158
doi: 10.1021/a10000155 pmid:10882205
18 Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chemical Society Reviews , 1998, 27(4): 241–250
doi: 10.1039/a827241z
19 Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews , 1999, 99(10): 2957–2976
doi: 10.1021/cr980133r pmid:11749507
20 Szulbinski W S, Czernuszewicz R S. The effect of ligand structure on surface enhanced Raman scattering by Fe(II) macrocyclic complexes: [FeIITPC]2+ and [FeIIDPC]2+. Inorganica Chimica Acta , 1996, 247(1): 11–18
doi: 10.1016/0020-1693(95)04946-0
21 Shao M W, Zhang M L, Wong N B, Ma D D D, Wang H, Chen W W, Lee S T. Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy. Applied Physics Letters , 2008, 93(23): 233118
doi: 10.1063/1.2969292
22 Shao M W, Lu L, Wang H, Wang S, Zhang M L, Ma D D D, Lee S T. An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from beta-silver vanadate and copper. Chemical Communicatons , 2008, (20): 2310–2312
23 D’Urzo L, Bozzini B. SERS study of the galvanostatic sequence used for the electrochemical deposition of copper from baths employed in the fabrication of interconnects. Journal of Materials Science Materials in Electronics , 2009, 20(3): 217–222
doi: 10.1007/s10854-008-9705-2
24 Bozzini B, D’Urzo L, Mele C, Romanello V. Electrodeposition of Cu from acidic sulphate solutions in the presence of polyethylene glycol and chloride ions. Journal of Materials Science Materials in Electronics , 2006, 17(11): 915–923
doi: 10.1007/s10854-006-0044-x
25 Mosier-Boss P A, Lieberman S H. Detection of nitrate and sulfate anions by normal Raman spectroscopy and SERS of cationic-coated, silver substrates. Applied Spectroscopy , 2000, 54(8): 1126–1135
doi: 10.1366/0003702001950922
Related articles from Frontiers Journals
[1] Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Synthesis of silicon nanowires supported Ag nanoparticles and their catalytic activity in photo-degradation of Rhodamine B[J]. Front Optoelec Chin, 2011, 4(2): 171-175.
Full text