Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (2) : 204-212     DOI: 10.1007/s12200-011-0130-4
REVIEW ARTICLE |
Review of fiber Bragg grating sensor technology
Jinjie CHEN, Bo LIU(), Hao ZHANG
Key Laboratory of Opto-Electronic Information and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300071, China
Download: PDF(455 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The current status of the fiber Bragg grating (FBG) sensor technology was reviewed. Owing to their salient advantages, including immunity to electromagnetic interference, lightweight, compact size, high sensitivity, large operation bandwidth, and ideal multiplexing capability, FBG sensors have attracted considerable interest in the past three decades. Among these sensing physical quantities, temperature and strain are the most widely investigated ones. In this paper, the sensing principle of FBG sensors was briefly introduced first. Then, we reviewed the status of research and applications of FBG sensors. As very important for industrial applications, multiplexing and networking of FBG sensors had been introduced briefly. Moreover, as a key technology, the wavelength interrogation methods were also reviewed carefully. Finally, we analyzed the problems encountered in engineering applications and gave a general review on the development of interrogation methods of FBG sensor.

Keywords fiber Bragg grating (FBG) sensors      multiplexing      networking      interrogation     
Corresponding Authors: LIU Bo,Email:liubo@mail.nankai.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Bo LIU,Jinjie CHEN,Hao ZHANG. Review of fiber Bragg grating sensor technology[J]. Front Optoelec Chin, 2011, 4(2): 204-212.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-011-0130-4
http://journal.hep.com.cn/foe/EN/Y2011/V4/I2/204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bo LIU
Jinjie CHEN
Hao ZHANG
Fig.1  Schematic diagram of strain and temperature FBG sensors
Fig.1  Schematic diagram of strain and temperature FBG sensors
Fig.2  Schematic diagram of FBG displacement sensors
Fig.2  Schematic diagram of FBG displacement sensors
Fig.3  Conceptual diagrams of optical voltage and current sensors in Ref. []. (a) Piezoelectric voltage sensor; (b) voltage sensor with increased sensitivity due to parallel electrical connection of individual piezoelectric stack elements; (c) current sensor employing voltage sensor with additional current transformer
Fig.3  Conceptual diagrams of optical voltage and current sensors in Ref. []. (a) Piezoelectric voltage sensor; (b) voltage sensor with increased sensitivity due to parallel electrical connection of individual piezoelectric stack elements; (c) current sensor employing voltage sensor with additional current transformer
Fig.4  Schematic diagram of novel acceleration FBG sensor
Fig.4  Schematic diagram of novel acceleration FBG sensor
Fig.5  Schematic diagram of clinometer proposed in Ref. []
Fig.5  Schematic diagram of clinometer proposed in Ref. []
Fig.6  Schematic diagram of flow-meter proposed in Ref. []
Fig.6  Schematic diagram of flow-meter proposed in Ref. []
Fig.7  Schematic diagram of quasi-distributed FBG sensor network
Fig.7  Schematic diagram of quasi-distributed FBG sensor network
Fig.8  Schematic diagram of FBG sensor network (BBS: broadband light source)
Fig.8  Schematic diagram of FBG sensor network (BBS: broadband light source)
Fig.9  Schematic diagram of Michelson interferometer method (PD: photo detector)
Fig.9  Schematic diagram of Michelson interferometer method (PD: photo detector)
Fig.10  Schematic diagram of interrogation system based on nonequilibrium M-Z interferometer
Fig.10  Schematic diagram of interrogation system based on nonequilibrium M-Z interferometer
Fig.11  Schematic diagram of F-P tunable filter interrogation system
Fig.11  Schematic diagram of F-P tunable filter interrogation system
Fig.12  Schematic diagram of AOTF-based interrogation system (VCO: voltage controlled oscillator)
Fig.12  Schematic diagram of AOTF-based interrogation system (VCO: voltage controlled oscillator)
Fig.13  Schematic diagram of interrogation system based on tilted fiber grating proposed in Ref. []
Fig.13  Schematic diagram of interrogation system based on tilted fiber grating proposed in Ref. []
Fig.14  Schematic diagram of interrogation system based on FDML wavelength swept laser
Fig.14  Schematic diagram of interrogation system based on FDML wavelength swept laser
1 Lee B. Review of the present status of optical fiber sensors. Optical Fiber Technology , 2003, 9(2): 57–79
doi: 10.1016/S1068-5200(02)00527-8
2 Rao Y J. In-fibre Bragg grating sensor. Measurement Science & Technology , 1997, 8(4): 355–375
doi: 10.1088/0957-0233/8/4/002
3 Othonos A. Fiber Bragg gratings. Review of Scientific Instruments , 1997, 68(12): 4309–4341
doi: 10.1063/1.1148392
4 Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology , 1997, 15(8): 1263–1276
doi: 10.1109/50.618320
5 Rao Y J. Fiber Bragg grating sensors: principles and applications. In: Grattan K T V, Meggitt B T eds)\. Optical Fiber Sensor Technology , 1998, 2: 355–389
6 Shu X W, Liu Y, Zhao D H, Gwandu B, Floreani F, Zhang L, Bennion I. Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement. Optics Letters , 2002, 27(9): 701–703
doi: 10.1364/OL.27.000701 pmid:18007904
7 Kersey A D, Davis M A, Patrick H J, LeBlanc M, Koo K P, Askins C G, Putnam M A, Friebele E J. Fiber grating sensors. Journal of Lightwave Technology , 1997, 15(8): 1442–1463
doi: 10.1109/50.618377
8 Xu M G, Archambault J L, Reekie L, Dakin J P. Thermally-compensated bending gauge using surface-mounted fiber gratings. International Journal of Optoelectron , 1994, 3(9): 281–283
doi: 10.1049/ip-opt:19941419
9 Dong X Y, Liu Y Q, Liu Z G, Dong X Y. Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor. Optics Communications , 2001, 192(3-6): 213–217
doi: 10.1016/S0030-4018(01)01157-9
10 Patrick H J, Williams G M, Kersey A D, Pedrazzani J R, Vengsarkar A M. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technology Letters , 1996, 8(9): 1223–1225
doi: 10.1109/68.531843
11 Guan B O, Tam H Y, Tao X M, Dong X Y. Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating. IEEE Photonics Technology Letters , 2000, 12(6): 675–677
doi: 10.1109/68.849081
12 Dong X Y, Yang X F, Zhao C L, Ding L, Shum P, Ngo N Q. A novel temperature-insensitive fiber Bragg grating sensor. Smart Materials and Structures , 2005, 14(2): N7–10
doi: 10.1088/0964-1726/14/2/N01
13 Song M, Lee B, Lee S B, Choi S S. Interferometric temperature-insensitive strain measurement with different-diameter fiber Bragg gratings. Optics Letters , 1997, 22(11): 790–792
doi: 10.1364/OL.22.000790 pmid:18185663
14 Frazao O, Carvalho J P, Ferreira L A, Marques L, Araujo F M, Santos J L. Discrimination of strain and temperature using Bragg grating in microstrctured and standard optical fibers. Measurement Science and Technology , 2005, 16(10): 2109–2113
doi: 10.1088/0957-0233/16/10/028
15 Chuang K C, Ma C C. Pointwise fiber Bragg grating displacement sensor system for dynamic measurements. Applied Optics , 2008, 47(20): 3561–3567
doi: 10.1364/AO.47.003561 pmid:18617972
16 Niewczas P, Dziuda L, Fusie G, McDonald J R. Temperature compensation for a piezoelectric fiber-optic voltage sensor. In: Proceedings of IMTC 2006 - Instrumentation and Measurement Technology Conference . 2006, 1994–1998
17 Fusick G, Niewczas P, Dziuda L, McDonald J R. Hysteresis compensation for a piezoelectric fiber-optic voltage sensor. Optical Engineering , 2005, 44(11): 345–348
18 Liu B, Niu W, Yang Y, Luo J, Cao Y, Kai G, Zhang W, Dong X. A novel fiber Bragg grating accelerometer. Chinese Journal of Scientific Instrument , 2006, 27(1): 42–44 (in Chinese)
19 Bao H, Dong X, Shao L Y, Zhao C L, Chan C C, Shum P. Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings. IEEE Photonics Technology Letters , 2010, 22(12): 863–865
doi: 10.1109/LPT.2010.2046630
20 Li H M, Gao H W, Liu B, Luo J H, Kai G Y, Yuan S Z, Dong X Y. A novel fiber Bragg grating flowmeter. Chinese Journal of Sensors and Actuators , 2006, 19(4): 1195–1197 (in Chinese)
21 Sato H, Watanabe K L. Experimental study on the use of a vortex whistle as a flowmeter. Instrumentation and Measurement , 2000, 49(1): 200–205
doi: 10.1109/19.836334
22 Lee K O, Chiang K S, Chen Z H. Temperature-insensitive fiber-Bragg-grating-based vibration sensor. Optical Engineering , 2001, 40(11): 2582–2585
doi: 10.1117/1.1412622
23 Takahashi N, Yoshimura K, Takahashi S. Detection of ultrasonic mechanical vibration of a solid using fiber Bragg grating. Japanese Journal of Applied Physics , 2000, 39: 3134–3138
24 Zhang W G, Liu Y G, Kai G Y, Zhao Q D, Yuan S Z, Dong X Y. A novel independent tuning technology of center wavelength and bandwidth of fiber Bragg grating. Optics Communications , 2003, 216(4-6): 343–350
25 Gwandu B A L, Zhang L, Chisholm K, Shu X, Bennion I. Compact FBG array structure for high spatial resolution distributed strain sensing. Measurement Science & Technology , 2001, 12(7): 918–921
26 Vohra S T, Todd M D, Johnson G A, Chang C C, Danver B A. Fiber Bragg grating sensor system for civil structure monitoring: applications and field tests. Proceedings of SPIE , 1999, 3746: 32–37
27 Henderson P J, Webb D J, Jackson D A, Zhang L, Bennion I. Highly-multiplexed grating-sensors for temperature-referenced quasi-static measurements of strain in concrete bridges. Proceedings of SPIE , 1999, 3746: 320–323
28 Weis R S, Kersey A D, Berkoff T A. A four-element fiber grating sensor array with phase-sensitive detection. IEEE Photonics Technology Letters , 1994, 6(12): 1469–1472
doi: 10.1109/68.392208
29 Optical Fiber Sensor Technology. Vol. 2. London: Chapman & Hall, 1998, 355–389
30 Andreas O, Kyriacos K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Boston , MA: Artech House, 1999
31 Ashoori R, Gebrmichal Y M, Xiao S, Kemp J, Grattan K T V, Palmer A W. Time domain multiplexing for Bragg grating strain measurement sensor network. Proceedings of SPIE , 1998, 3746: 308–311
32 Yao Y, Yi B S, Xiao J S. Research progress in wavelength demodulation technology of fiber Bragg grating sensors. Optical Communication Technology , 2007, 31(11): 41–45 (in Chinese)
33 Koo K P, Kersey A D. Bragg grating based laser sensor system with interferometric interrogation and wavelength division multiplexing. Journal of Lightwave Technology , 1995, 13(7): 1243–1249
doi: 10.1109/50.400692
34 Kersey A D, Berkoff T A, Morey W W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter. Optics Letters , 1993, 18(16): 1370–1372
doi: 10.1364/OL.18.001370 pmid:19823386
35 Kim H S, Yun S H, Kwang I K, Kim B Y. All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile. Optics Letters , 1997, 22(19): 1476–1478
doi: 10.1364/OL.22.001476 pmid:18188273
36 Ball G A, Morey W W, Cheo P K. Fiber laser source/analyzer for Bragg grating sensor array interrogation. Journal of Lightwave Technology , 1994, 12(4): 700–703
doi: 10.1109/50.285367
37 Chen G, Xiao H, Huang Y, Zhang Y, Zhou Z. Simultaneous strain and temperature measurement using long-period fiber grating sensors. Proceedings of SPIE , 2010, 7649: 343–346
38 Kersey A D, Morey W W. Multiplexed Bragg grating fibre-laser strain-sensor system with mode-locked interrogation. Electronics Letters , 1993, 29(1): 112–114
doi: 10.1049/el:19930073
39 Yun S H, Richardson D J, Kim B Y. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser. Optics Letters , 1998, 23(11): 843–845
doi: 10.1364/OL.23.000843 pmid:18087360
40 Jáuregui C, Quintela A, López-Higuera J M. Interrogation unit for fiber Bragg grating sensors that uses a slanted fiber grating. Optics Letters , 2004, 29(7): 676–678 15072355
doi: 10.1364/OL.29.000676
41 Xia H Y, Wang C, Sebastien B, Yao J P. Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion. Journal of Lightwave Technology , 2010, 28(3): 224–261
42 Jung E J, Kim C S, Jeong M Y, Kim M K, Jeon M Y, Jung W, Chen Z P. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser. Optics Express , 2008, 16(21): 16552–16560
pmid:18852764
43 Gagliardi G, Salza M, Ferraro P, De Natale P. Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation. Optics Express , 2005, 13(7): 2377–2384
doi: 10.1364/OPEX.13.002377 pmid:19495128
44 Sano Y, Yoshino T. Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors. Journal of Lightwave Technology , 2003, 21(1): 132–139
doi: 10.1109/JLT.2003.808620
45 Song M, Yin S, Ruffin P B. Fiber Bragg grating strain sensor demodulation with quadrature sampling of a mach-zehnder interferometer. Applied Optics , 2000, 39(7): 1106–1111
doi: 10.1364/AO.39.001106 pmid:18337990
Related articles from Frontiers Journals
[1] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[2] Christian CARBONI,Guifang LI. Novel applications of space-division multiplexing[J]. Front. Optoelectron., 2016, 9(2): 270-276.
[3] Ming LUO,Qi MO,Xiang LI,Rong HU,Ying QIU,Cai LI,Zhijian LIU,Wu LIU,Huang YU,Wei DU,Jing XU,Zhixue HE,Qi YANG,Shaohua YU. Transmission of 200 Tb/s (375 × 3 × 178.125 Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF[J]. Front. Optoelectron., 2015, 8(4): 394-401.
[4] Jean TEMGA,Deming LIU,Minming ZHANG. Improved pilot data aided feed forward based on maximum likelihood for carrier phase jitter recovery in coherent optical orthogonal frequency division multiplexing[J]. Front. Optoelectron., 2014, 7(4): 493-500.
[5] Changyuan YU,Pooi-Yuen KAM,Shengjiao CAO. Carrier recovery in coherent receiver of optical orthogonal frequency division multiplexing system[J]. Front. Optoelectron., 2014, 7(3): 348-358.
[6] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[7] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[8] Dagong JIA, Haiwei ZHANG, Zhe JI, Neng BAI, Guifang LI. Optical fiber amplifiers for space-division multiplexing[J]. Front Optoelec, 2012, 5(4): 351-357.
[9] Abdul LATIF, Xiangjun XIN, Aftab HUSSAIN, Liu BO, Yousaf KHAN, Ashiq HUSSAIN, Abid MUNIR. An AWG based colorless WDM-PON with RZ-DPSK modulated downstream and re-modulation of DL signal for OOK upstream[J]. Front Optoelec, 2012, 5(3): 298-305.
[10] Xing ZHENG, Jinlong WEI, Roger Philip GIDDINGS, Jianming TANG. Simplified adaptively modulated optical OFDM modems using subcarrier modulation with added input/output reconfigurability[J]. Front Optoelec, 2012, 5(2): 187-194.
[11] Kang YANG, Minming ZHANG, Deming LIU, Lei DENG. Design and evaluation of scheduling algorithms for TDM/WDM PON based on RSOA[J]. Front Optoelec Chin, 2011, 4(2): 217-222.
[12] Shangjian ZHANG, Lei XU, Yong LIU, Yongzhi LIU. In-band clock distribution concept for ultra-high bit rates OTDM system[J]. Front Optoelec Chin, 2010, 3(4): 343-346.
[13] Wei CHEN, Shiyu LI, Peixiang LU, Dongxiang WANG, Wenyong LUO. Dispersion compensation optical fiber modules for 40 Gbps WDM communication systems[J]. Front Optoelec Chin, 2010, 3(4): 333-338.
[14] Shuang LIU, Deming LIU, Junqiang SUN. Multiple-wavelength transmitter for WDM optical network[J]. Front Optoelec Chin, 2009, 2(2): 200-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed