Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2010, Vol. 3 Issue (1) : 13-21     DOI: 10.1007/s12200-009-0086-9
Research articles |
Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives
Download: PDF(387 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Optical fiber sensors based on stimulated Brillouin scattering have now clearly demonstrated their excellent capability for long-range distributed strain and temperature measurements. The fiber is used as sensing element, and a value for temperature and/or strain can be obtained from any point along the fiber. After explaining the principle and presenting the standard implementation, the latest developments in this class of sensors will be introduced, such as the possibility to measure with a spatial resolution of 10 cm and below while preserving the full accuracy on the determination of temperature and strain.
Issue Date: 05 March 2010
 Cite this article:   
. Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives[J]. Front. Optoelectron.,2010, 3(1): 13-21.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-009-0086-9
http://journal.hep.com.cn/foe/EN/Y2010/V3/I1/13
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Horiguchi T, Tateda M. Optical-fiber-attenuationinvestigation using stimulated Brillouin scattering between a pulseand a continuous wave. Optics Letters, 1989, 14(8): 408―410

doi: 10.1364/OL.14.000408
Horiguchi T, Kurashima T, Tateda M. A technique to measure distributed strain in opticalfibers. IEEE Photonics Technology Letters, 1990, 2(5): 352―354

doi: 10.1109/68.54703
Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouinscattering in optical silica fibers. OpticsLetters, 1990, 15(18): 1038―1040

doi: 10.1364/OL.15.001038
Horiguchi T, Kurashima T, Tateda M. Tensile strain dependence of Brillouin frequency shiftin silica optical fibers. IEEE PhotonicsTechnology Letters, 1989, 1(5): 107―108

doi: 10.1109/68.34756
Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-modeoptical fibers. Journal of Lightwave Technology, 1997, 15(10): 1842―1851

doi: 10.1109/50.633570
Horiguchi T, Shimizu K, Kurashima T, Tateda M, Koyamada Y. Development of a distributedsensing technique using Brillouin scattering. Journal of Lightwave Technology, 1995, 13(7): 1296―1302

doi: 10.1109/50.400684
Alahbabi M N, Cho Y T, Newson T P. 150-km-range distributed temperature sensor based oncoherent detection of spontaneous Brillouin backscatter and in-lineRaman amplification. Journal of the OpticalSociety of America B, 2005, 22(6): 1321―1324

doi: 10.1364/JOSAB.22.001321
Bao X, Webb D J, Jackson D A. 32-km distributed temperature sensor based on Brillouinloss in an optical fiber. Optics Letters, 1993, 18(18): 1561―1563

doi: 10.1364/OL.18.001561
Nikles M, Thevenaz L, Robert P A. Simple distributed fiber sensor based on Brillouin gainspectrum analysis. Optics Letters, 1996, 21(10): 758―760

doi: 10.1364/OL.21.000758
Thevenaz L, Nikles M, Fellay A, Facchini M, Robert P A. Applications of distributedBrillouin fiber sensing. In: Proceedingsof International Conference on Applied Optical Metrology. Balatonfured: SPIE, 1998, 3407: 374―381
Van Deventer M O, Boot A J. Polarization properties ofstimulated Brillouin scattering in single-mode fibers. Journal of Lightwave Technology, 1994, 12(4): 585―590

doi: 10.1109/50.285349
Thevenaz L, Foaleng-Mafang S, Nikles M. Fast measurement of local PMD with high spatial resolutionusing stimulated Brillouin scattering. In: Proceedings of the 33rd European Conference on Optical Communication. 2007, 10.1.2
Hotate K, Hasegawa T. Measurement of Brillouingain spectrum distribution along an optical fiber using a correlation-basedtechnique-proposal, experiment and simulation. IEICE Transactions on Electronics, 2000, E83-C(3): 405―412
Hotate K, Tanaka M. Distributed fiber Brillouinstrain sensing with 1-cm spatial resolution by correlation-based continuous-wavetechnique. IEEE Photonics Technology Letters, 2002, 14(2): 179―181

doi: 10.1109/68.980502
Bao X, Brown A, DeMerchant M, Smith J. Characterizationof the Brillouin-loss spectrum of single-mode fibers by use of veryshort (<10-ns) pulses. Optics Letters, 1999, 24(8): 510―512

doi: 10.1364/OL.24.000510
Lecoeuche V, Webb D J, Pannell C N, Jackson D A. Transient response in high-resolution Brillouin-based distributedsensing using probe pulses shorter than the acoustic relaxation time. Optics Letters, 2000, 25(3): 156―158

doi: 10.1364/OL.25.000156
Brown A W, Colpitts B G, Brown K. Dark-pulse Brillouin optical time-domain sensor with20-mm spatial resolution. Journal of LightwaveTechnology, 2007, 25(1): 381―386

doi: 10.1109/JLT.2006.886672
Foaleng-Mafang S, Beugnot J C, Thevenaz L. Optimized configuration for high resolution distributedsensing using Brillouin echoes. In: Proceedingsof the 20th International Conference on Optical Fibre Sensors, Edinburgh: SPIE, 2009, 7503: 75032C
Thevenaz L, Foaleng-Mafang S. Distributed fiber sensingusing Brillouin echoes. In: Proceedingsof the 19th International Conference on Optical Fibre Sensors. Perth: SPIE, 2008, 7004: 70043N
Thevenaz L, Beugnot J C. General analytical modelfor distributed Brillouin sensors with sub-meter spatial resolution. In: Proceedings of the 20th International Conferenceon Optical Fibre Sensors. Edinburgh: SPIE, 2009, 7503: 75036A
Li W, Bao X, Li Y, Chen L. Differentialpulse-width pair BOTDA for high spatial resolution sensing. Optics Express, 2008, 16(26): 21616―21625

doi: 10.1364/OE.16.021616
Song K Y, Zou W, He Z, Hotate K. All-opticaldynamic grating generation based on Brillouin scattering in polarization-maintainingfiber. Optics Letters, 2008, 33(9): 926―928

doi: 10.1364/OL.33.000926
Dong Y, Bao X, Chen L. Distributed temperature sensing based on birefringenceeffect on transient Brillouin grating in a polarization-maintainingphotonic crystal fiber. Optics Letters, 2009, 34(17): 2590―2592

doi: 10.1364/OL.34.002590
Song K Y, Zou W, He Z, Hotate K. Opticaltime-domain measurement of Brillouin dynamic grating spectrum in apolarization-maintaining fiber. OpticsLetters, 2009, 34(9): 1381―1383

doi: 10.1364/OL.34.001381
Zou W, He Z, Song K Y, Hotate K. Correlation-baseddistributed measurement of a dynamic grating spectrum generated instimulated Brillouin scattering in a polarization-maintaining opticalfiber. Optics Letters, 2009, 34(7): 1126―1128

doi: 10.1364/OL.34.001126
Song K Y, Chin S, Primerov N, Thevenaz L. Time-domaindistributed sensor with 1?cm spatial resolution based on Brillouindynamic gratings. In: Proceedings of the20th International Conference on Optical Fibre Sensors. Edinburgh: SPIE, 2009, 7503: 75037V
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed