Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2009, Vol. 2 Issue (2) : 119-140     DOI: 10.1007/s12200-009-0011-2
REVIEW ARTICLE |
Status and prospects for phosphor-based white LED packaging
Zongyuan LIU1,2, Sheng LIU1,2(), Kai WANG2,3, Xiaobing LUO2,4
1. Institute for Microsystems, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Division of MOEMS, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China; 3. College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 4. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(740 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The status and prospects for high-power, phosphor-based white light-emitting diode (LED) packaging have been presented. A system view for packaging design is proposed to address packaging issues. Four aspects of packaging are reviewed: optical control, thermal management, reliability and cost. Phosphor materials play the most important role in light extraction and color control. The conformal coating method improves the spatial color distribution (SCD) of LEDs. High refractive index (RI) encapsulants with high transmittance and modified surface morphology can enhance light extraction. Multi-phosphor-based packaging can realize the control of correlated color temperature (CCT) with high color rendering index (CRI). Effective thermal management can dissipate heat rapidly and reduce thermal stress caused by the mismatch of the coefficient of thermal expansion (CTE). Chip-on-board (CoB) technology with a multi-layer ceramic substrate is the most promising method for high-power LED packaging. Low junction temperature will improve the reliability and provide longer life. Advanced processes, precise fabrication and careful operation are essential for high reliability LEDs. Cost is one of the biggest obstacles for the penetration of white LEDs into the market for general illumination products. Mass production in terms of CoB, system in packaging (SiP), 3D packaging and wafer level packaging (WLP) can reduce the cost significantly, especially when chip cost is lowered by using a large wafer size.

Keywords light-emitting diode (LED)      packaging      phosphor      silicone      optical      thermal      reliability      cost     
Corresponding Authors: LIU Sheng,Email:victor_liu63@126.com   
Issue Date: 05 June 2009
 Cite this article:   
Kai WANG,Xiaobing LUO,Zongyuan LIU, et al. Status and prospects for phosphor-based white LED packaging[J]. Front Optoelec Chin, 2009, 2(2): 119-140.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-009-0011-2
http://journal.hep.com.cn/foe/EN/Y2009/V2/I2/119
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kai WANG
Xiaobing LUO
Zongyuan LIU
Sheng LIU
Fig.1  Schematic diagram for packaging with various design issues
Fig.2  Simplified model for a single-chip package
Fig.3  SEM picture of phosphor particles (the sizes of phosphor particles are irregular. Study normally applies the average radius to represent the dimension of phosphor particle. SiO particles are used to enhance the scattering)
Fig.4  Illustrations for three phosphor coating technologies. (a) Freely dispersed coating (light color is varied from yellow to white to blue. Representative corporations are Everlight and Seoul Semicon. Modified method is applying a mold to improve the uniformity of thickness); (b) conformal coating (light color is almost white. Representative products are Luxeon from Lumileds and XLamp from Cree); (c) remote coating (light color is varied from white to yellow. The surfaces of pre-cured encapsulants and phosphor can be found to be concave. Representative corporations are LedEngin and GELcore. Modified method is remote coating phosphor with spherical shape)
Fig.5  Influences of encapsulants’ RI on of plane surface chip (angle is the critical angle in which light can be extracted from chip to encapsulants)
Fig.6  Illustrations for chips with roughened surface (the size of roughness is nano-micro scale. Roughened surface presents higher opportunity for light extraction. Small bubbles reduce the chances that light can be directly emitted out)
Fig.7  Radiation patterns of three lenses. (a) Lambertian lens; (b) batwing lens; (c) side emitting lens (Lambertian lens is the most adopted configuration in LED packaging. Lambertian radiation can be used in applications such as road lamp, MR16; batwing lens and side emitting lens are suitable for applications such as backlighting and cell phone)
Fig.8  Spectrums of SPB LEDs with various CCT (increasing thickness or concentration can change CCT to be lower)
Fig.9  Spectrums of MPB LEDs (Ra is the average value of CRI. Green line is the first configuration of MPB. In the second configuration of MPB, it can be found that CCT can be controlled from warm white to cool white while keeping high CRI)
phosphor compositionemission color
SrSiON:Eu2+yellow-green
(Ca,Sr,Ba)5(PO4)Cl:Eu2+, Mn2+yellow-orange
Sr2Ga2S4:Eu2+Green
SrAl2O4:Eu2+Green
Sr2P2O7:Eu2+, Mn2+yellow-green
(Y,Gb,Tb)3(Al,Ga)5O12:Ce3+yellow-green-orange
Tab.1  Representative phosphors for MPB LEDs
Fig.10  Thermal resistance network of Luxeon LED (there are at least four interface resistances. These interfaces are bottlenecks of heat conduction and should be paid special attention)
Fig.11  Thermal resistance network of CoB (the total thickness of CoB is significantly thinner than that of Luxeon, therefore, the system resistance of CoB is believed to be lower than that of Luxeon)
Fig.12  Temperature distribution for a defected LED chip (the variation of temperature exceeds 40°C)
Fig.13  Schematic diagram for six configurations of CoB technologies (chips in all examples are all vertical electrode chips)
materialsthermal conductivity/(W·mK-1)CTE/(10-6?K-1)
Cu39816.5
GaN1303.2
Sapphire35-405.8
SiC90-1604.5
AlN1754.5
AlSiC2007.4
Si1484.0
Al16023.6
Al2O3276.9
LTCC35.8
Au31814.1
Ag42919.1
CuMo1656.6
CuW1756.8
Cu/diamond6005.8
Tab.2  Thermal properties of materials
Fig.14  SEM images for die attach materials (small voids and initial cracks are inevitable in the curing process)
Fig.15  Constitution of silicon materials (increasing the ratio of R branches can decrease the modulus of silicones)
Fig.16  Reliability issues caused by bubbles. (a) Three cases of bubbles of silicone encapsulants; (b) effects of bubbles on light extraction
Fig.17  Delaminations in plastic packages of Luxeon
Fig.18  Development of LED packaging size
Fig.19  Haitz’s law (orange line and dark cyan line) in the past forty years and prospects of lumen (purple line) and cost for white LED since 2000 (red square: lumen of red LED; green triangle: cost of red LED; blue square: lumen of white LED; pink triangle: cost of white LED)
1 Holonyak J N, Bevacqua S F. Coherent (visible) light emission from Ga(As1–xPx) junctions. Applied Physics Letters , 1962, 1(4): 82-83
doi: 10.1063/1.1753706
2 Dupuis R D, Krames M R. History, development, and applications of high-brightness visible light-emitting diodes. Journal of Lightwave Technology , 2008, 26(9): 1154-1171
doi: 10.1109/JLT.2008.923628
3 Lee Y J, Lu T C, Kuo H C, Wang S C. High brightness GaN-based light-emitting diodes. Journal of Display Technology , 2007, 3(2): 118-125
doi: 10.1109/JDT.2007.894380
4 Nakamura S, Mukai T, Senoh M. High-power GaN P-N junction blue-light-emitting diodes. Japanese Journal of Applied Physics , 1991, 30(12A): L1998-L2001
doi: 10.1143/JJAP.30.L1998
5 Nakamura S, Senoh M, Mukai T. High-power InGaN/GaN double-heterostructure violet light emitting diodes. Applied Physics Letters , 1993, 62(19): 2390-2392
doi: 10.1063/1.109374
6 Schlotter P, Schmidt R, Schneider J. Luminescence conversion of blue light emitting diodes. Applied Physics A: Materials Science & Processing , 1997, 64(4): 417-418
doi: 10.1007/s003390050498
7 Nakamura S, Pearton S, Fasol G. The Blue Laser Diode: GaN Based Light Emitters and Lasers. 2nd ed. Berlin: Springer, 1997, 215-230
8 Evans D L. High-luminance LEDs replace incandescent lamps in new applications. In: Light-Emitting Diodes: Research, Manufacturing, and Applications . San Jose: SPIE, 1997, 3002: 142-153
9 Steranka F M, Bhat J C, Collins D, Cook L, Craford M G, Fletcher R, Gardner N, Grillot P, Goetz W, Keuper M, Khare R, Kim A, Krames M, Harbers G, Ludowise M, Martin P S, Misra M, Mueller G, Mueller-Mach R, Rudaz S, Shen Y-C, Steigerwald D, Stockman S, Subramanya S, Trottier T, Wierer J J. High power LEDs: technology status and market applications. Physica Status Solidi A , 2002, 194(2): 380-388
doi: 10.1002/1521-396X(200212)194:2<380::AID-PSSA380>3.0.CO;2-N
10 Craford M G. LEDs for solid state lighting and other emerging applications: status, trends, and challenges. In: Fifth International Conference on Solid State Lighting . San Diego: SPIE, 2005, 5941: 594101
11 Wang K, Luo X, Liu Z, Zhou B, Gan Z, Liu S. Optical analysis of an 80-W light-emitting-diode street lamp. Optical Engineering , 2008, 47(1): 013002
doi: 10.1117/1.2835010
12 OIDA. Light emitting diodes (LEDs) for general illumination, an OIDA technology roadmap update 2002. 2002, http://lighting.sandia.gov/lightingdocs/OIDA_SSL_LED_Roadmap_Full.pdf
13 LEDs Magazine. LED chips set new R&D records. 2008, http://www.ledsmagazine.com/features/5/10/5
14 Haque S, Steigerwald D, Rudaz S, Steward B, Bhat J, Collins D, Wall F, Subramanya S, Elpedes C, Elizondo P, Martin P S. Packaging challenges of high-power LEDs for solid state lighting. 2000, http://www.lumileds.com/pdfs/techpaperspres/manuscript_IMAPS_2003.PDF
15 Hahn B, Weimar A, Peter M, Baur J. High-power InGaN LEDs: present status and future prospects. In: Light-Emitting Diodes: Research, Manufacturing, and Applications XII . San Jose: SPIE, 2008, 6910: 691004
16 Collins W D, Krames M R, Verhoeckx G J, Martin van Leth N J. US Patent, 6576488, 2001
17 Yum J H, Seo S Y, Lee S, Sung Y E. Comparison of Y3Al5O12:Ce0.05 phosphor coating methods for white-light-emitting diode on gallium nitride. In: Solid State Lighting and Displays . San Diego: SPIE, 2001, 4445: 60-69
18 Loh B P, Medendorp N W Jr, Andrews P, Fu Y, Laughner M, Letoquin R. US Patent, 20080079017 A1, 2008
19 Braune B, Petersen K, Strauss J, Kromotis P, Kaempf M. A new wafer level coating technique to reduce the color distribution of LEDs. In: Light-Emitting Diodes: Research, Manufacturing, and Applications XI . San Jose: SPIE, 2007, 6486: 64860X
20 Yamada K, Imai Y, Ishii K. Optical simulation of light source devices composed of blue LEDs and YAG phosphor. Journal of Light and Visual Environment , 2003, 27(2): 70-74
doi: 10.2150/jlve.27.70
21 Zhu Y, Narendran N, Gu Y. Investigation of the optical properties of YAG:Ce phosphor. In: Sixth International Conference on Solid State Lighting . San Diego: SPIE, 2006, 6337: 63370S
22 Arik M, Setlur A, Weaver S, Haitko D, Petroski J. Chip to system levels thermal needs and alternative thermal technologies for high brightness LEDs. Journal of Electronic Packaging , 2007, 129(3): 328-338
doi: 10.1115/1.2753958
23 Luo H, Kim J K, Schubert E F, Cho J, Sone C, Park Y. Analysis of high-power packages for phosphor-based white-light-emitting diodes. Applied Physics Letters , 2005, 86(24): 243505
doi: 10.1063/1.1949282
24 Luo H, Kim J K, Xi Y, Schubert E F, Cho J, Sone C, Park Y. Analysis of high-power packages for white-light-emitting diode lamps with remote phosphor. Materials Research Society , 2006, 892: 187-194
25 Kim J K, Luo H, Schubert E F, Cho J, Sone C, Park Y. Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup. Japanese Journal of Applied Physics , 2005, 44(20-23): L649-L651
doi: 10.1143/JJAP.44.L649
26 Fan B F, Wu H, Zhao Y, Xian Y L, Wang G. Study of phosphor thermal-isolated packaging technologies for high-power white light-emitting diodes. IEEE Photonics Technology Letters , 2007, 19(15): 1121-1123
doi: 10.1109/LPT.2007.901098
27 Jordan R C, Bauer J, Oppermann H. Optimized heat transfer and homogeneous color converting for ultra high brightness LED package. In: Photonics in the Automobile II . Strasbourg: SPIE, 2006, 6198: 61980B
28 Narendran N. Improved performance white LED. In: Fifth International Conference on Solid State Lighting . San Diego: SPIE, 2005, 5941: 594108
29 Narendran N, Gu F, Freyssinier-Nova J P, Zhu Y. Extracting phosphor-scattered photons to improve white LED efficiency. Physica Status Solidi A , 2005, 202(6): R60-R62
doi: 10.1002/pssa.200510015
30 Liu Z Y, Liu S, Wang K, Luo X B. Analysis of factors affecting color distribution of white LEDs. In: Proceedings of 2008 International Conference on Electronic Packaging Technology and High Density Packaging . 2008, 4607013-1-4607013-8
31 Allen S C, Steckl A J. ELiXIR-solid-state luminaire with enhanced light extraction by internal reflection. Journal of Display Technology , 2007, 3(2): 155-159
doi: 10.1109/JDT.2007.895358
32 Liu Z Y, Liu S, Wang K, Luo X B. Optical analysis of color distribution in white LEDs with various packaging methods. IEEE Photonics Technology Letters , 2008, 20(24): 2027-2029
doi: 10.1109/LPT.2008.2005998
33 Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamura S. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Applied Physics Letters , 2004, 84(6): 855-857
doi: 10.1063/1.1645992
34 Huang H W, Kao C C, Chu J T, Wang W C, Lu T C, Kuo H C, Wang S C, Yu C C, Kuo S Y. Investigation of InGaN/GaN light emitting diodes with nano-roughened surface by excimer laser etching method. Materials Science and Engineering B , 2007, 136(2-3): 182-186
doi: 10.1016/j.mseb.2006.09.030
35 Gao H Y, Yan F W, Fan Z C, Li J M, Zeng Y P, Wang G H. Improved light extraction of GaN-based LEDs with nano-roughened p-GaN surfaces. Chinese Physics Letters , 2008, 25(9): 3448-3451
doi: 10.1088/0256-307X/25/9/095
36 Mont F W, Kim J K, Schubert M F, Luo H, Schubert E F, Siegel R W. High refractive index nanoparticle-loaded encapsulants for light-emitting diodes. In: Light-Emitting Diodes: Research, Manufacturing, and Applications XI . San Jose: SPIE, 2007, 6486: 64861C
37 Narendran N, Gu Y, Freyssinier J P, Yu H, Deng L. Solid-state lighting: failure analysis of white LEDs. Journal of Crystal Growth , 2004, 268(3-4): 449-456
doi: 10.1016/j.jcrysgro.2004.04.071
38 Norris A W, Bahadur M, Yoshitake M. Novel silicone materials for LED packaging. In: Fifth International Conference on Solid State Lighting . San Diego: SPIE, 2005, 5941: 594115
39 Bahadur M, Norris A W, Zarisfi A, Alger J S, Windiate C C. Silicone materials for LED packaging. In: Sixth International Conference on Solid State Lighting . San Diego: SPIE, 2006, 6337: 63370F
40 Lee S J. Light-emitting diode lamp design by Monte Carlo photon simulation. In: Light-Emitting Diodes: Research, Manufacturing, and Applications V . San Jose: SPIE, 2001, 4278: 99-108
41 West R S. Side-emitting high-power LEDs and their application in illumination. In: Solid State Lighting II . Seattle: SPIE, 2002, 4776: 171-175
42 Chang J G, Liao C L D, Hwang C C. Enhancement of the optical performances for the LED backlight systems with a novel lens cap. In: Novel Optical Systems Design and Optimization IX . San Diego: SPIE, 2006, 6289: 62890X
43 Chao P C P, Liao L D, Chiu C W. Design of a novel LED lens cap and optimization of LED placement in a large area direct backlight for LCD-TVs. In: Photonics in Multimedia . Strasbourg: SPIE, 2006, 6196: 61960N
44 Chi W, George N. Light-emitting diode illumination design with a condensing sphere. Journal of the Optical Society of America A , 2006, 23(9): 2295-2298
doi: 10.1364/JOSAA.23.002295
45 Liu Z Y, Liu S, Wang K, Luo X B. Effects of phosphor's location on LED packaging performance. In: Proceedings of 2008 International Conference on Electronic Packaging Technology and High Density Packaging . 2008, 4606982-1-4606982-7
46 Wang D M, Chen S H, Wang M, Xiang S H. The design and fabrication of microlens and LED integrated packaging. In: Proceedings of the 7th International Conference on Electronic Packaging Technology, Shanghai . 2006, 359803-1-359803-3
47 Zachau M, Becker D, Berben D, Fiedler T, Jermann F, Zwaschka F. Phosphors for solid state lighting. In: Light-Emitting Diodes: Research, Manufacturing, and Applications XII . San Jose: SPIE, 2008, 6910: 691010
48 Mesli T. Improvement of ultra-high-brightness white LEDs. In: Manufacturing LEDs for Lighting and Displays . Berlin: SPIE, 2007, 6797: 67970N
49 Braune B, Bogner G, Brunner H, Kraeuter G, Hoehn K. New developments in LED lighting by novel phosphors. In: Light-Emitting Diodes: Research, Manufacturing, and Applications VII . San Jose: SPIE, 2003, 4996: 87-94
50 Mueller-Mach R, Mueller G O, Krames M R. Phosphor materials and combinations for illumination-grade white PCLEDs. In: Third International Conference on Solid State Lighting . San Diego: SPIE, 2004, 5187: 115-122
51 Mueller-Mach R, Mueller G O, Krames M R, Trottier T. High-power phosphor-converted light-emitting diodes based on III-Nitrides. IEEE Journal of Selected Topics in Quantum Electronics , 2002, 8(2): 339-345
doi: 10.1109/2944.999189
52 Ohno Y. Color rendering and luminous efficacy of white LED spectra. In: Fourth International Conference on Solid State Lighting . Denver: SPIE, 2004, 5530: 88-98
53 Braune B, Brunner H, Strauss J, Petersen K. Light conversion in opto semiconductor devices: from the development of luminous materials to products with customized colors. In: Optoelectronic Devices: Physics, Fabrication, and Application II . Boston: SPIE, 2005, 6013: 60130D
54 Chou H Y, Hsu T H, Yang T H. Effective method for improving illuminating properties of white-light LEDs. In: Light-Emitting Diodes: Research, Manufacturing, and Applications IX . San Jose: SPIE, 2005, 5739: 33-41
55 Krames M R, Shchekin O B, Mueller-Mach R, Mueller G O, Zhou L, Harbers G, Craford M G. Status and future of high-power light-emitting diodes for solid-state lighting. Journal of Display Technology , 2007, 3(2): 160-175
doi: 10.1109/JDT.2007.895339
56 Summers C J, Wagner B K, Menkara H. Solid state lighting: diode phosphors. In: Third International Conference on Solid State Lighting . San Diego: SPIE, 2004, 5187: 123-132
57 Wu H, Zhang X, Guo C, Xu J, Wu M, Su Q. Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors. IEEE Photonics Technology Letters , 2005, 17(6): 1160-1162
doi: 10.1109/LPT.2005.846504
58 Mueller-Mach R, Mueller G, Krames M R, H?ppe H A, Stadler F, Schnick W, Juestel T, Schmidt P. Highly efficient all-nitride phosphor-converted white light emitting diode. Physica Status Solidi A , 2005, 202(9): 1727-1732
doi: 10.1002/pssa.200520045
59 Taguchi T. Overview: present status and future prospect of system and design in white LED lighting technologies. In: Fourth International Conference on Solid State Lighting . Denver: SPIE, 2004, 5530: 7-16
60 Nayama S, Itoh K. Case Study on combination of fluorescent materials for white LED to obtain high color rendering indexes. Journal of Light and Visual Environment , 2006, 30(1): 39-42
doi: 10.2150/jlve.30.39
61 Kobashi K, Taguchi T. Warm white LEDs lighting over Ra=95 and its applications. In: Light-Emitting Diodes: Research, Manufacturing, and Applications XI. San Jose, CA , USA: SPIE, 2007, 6486: 648610
62 Uchida Y, Taguchi T. Theoretical and experimental luminous characteristics of white LEDs composed of multiphosphors and near-UV LED for lighting. In: Light-Emitting Diodes: Research, Manufacturing, and Applications VII . San Jose: SPIE, 2003, 4996: 166-173
63 Hui K N, Lai P T, Choi H W. Spectral conversion with fluorescent microspheres for light emitting diodes. Optics Express , 2008, 16(1): 13-18
doi: 10.1364/OE.16.000013
64 Lee H, Park Y, Chang M, Kim G, Hong S, Won H, Lee J, Oh Y. The enhancement of light efficiency using modified phosphor which is coated sub-micro size sulfonated polystyrene beads. In: Nanophotonic Materials III . San Diego: SPIE, 2006, 6321: 63210B
65 Arik M, Becker C A, Weaver S E, Petroski J. Thermal management of LEDs: package to system. In: Third International Conference on Solid State Lighting . San Diego: SPIE, 2004, 5187: 64-75
66 Kuckmann O. High-power LED arrays: special requirements on packaging technology. In: Light-Emitting Diodes: Research, Manufacturing, and Applications X . San Jose: SPIE, 2006, 6134: 613404
67 Hu J, Yang L, Shin M W. Thermal effects of moisture inducing delamination in light-emitting diode packages. In: Advanced LEDs for Solid State Lighting . Gwangju: SPIE, 2006, 6355: 635516
68 You J P, He Y, Shi F G. Thermal management of high power LEDs: Impact of die attach materials. In: Proceedings of 2007 International Microsystems, Packaging, Assembly and Circuits Technology . 2007, 239-242
69 Tu K N, Gusak A M, Li M. Physics and materials challenges for lead-free solders. Journal of Applied Physics , 2003, 93(3): 1335-1353
doi: 10.1063/1.1517165
70 Park J W, Yoon Y B, Shin S H, Choi S H. Joint structure in high brightness light emitting diode (HB LED) packages. Materials Science and Engineering: A , 2006, 441(1-2): 357-361
doi: 10.1016/j.msea.2006.09.043
71 Fan B F, Zhao Y, Xian Y L, Wang G. Thermal simulation studies of high-power light-emitting diodes. In: Advanced LEDs for Solid State Lighting . Gwangju: SPIE, 2006, 6355: 63550D
72 Arik M, Weaver S. Effect of chip and bonding defects on the junction temperatures of high-brightness light-emitting diodes. Optical Engineering , 2005, 44(11): 111305
doi: 10.1117/1.2130127
73 Hartmann P, Wenzl F P, Sommer C, Pachler P, Hoschopf H, Schweighart M, Hartmann M, Kuna L, Jakopic G, Leising G, Tasch S. White LEDs and modules in chip-on-board technology for general lighting. In: Sixth International Conference on Solid State Lighting . San Diego: SPIE, 2006, 6337: 63370I
74 Petroski J. Spacing of high-brightness LEDs on metal substrate PCB’s for proper thermal performance. In: Proceedings of the Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems , 2004, 2: 507-514
75 DeMilo C, Bergad C, Forni R, Brukilacchio T. Thermally induced stresses resulting from coefficient of thermal expansion differentials between an LED sub-mount material and various mounting substrates. In: Light-Emitting Diode: Research, Manufacturing, and Applications XI . San Jose: SPIE, 2007, 6486: 64860N
76 Cho H M, Kim H J. Metal-core printed circuit board with alumina layer by aerosol deposition process. IEEE Electron Device Letters , 2008, 29(9): 991-993
doi: 10.1109/LED.2008.2001633
77 Kurokawa Y, Utsumi K, Takamizawa H, Kamata T, Noguchi S. AlN substrates with high thermal conductivity. IEEE Transactions on Components, Hybrids, and Manufacturing Technology , 1985, 8(2): 247-252
doi: 10.1109/TCHMT.1985.1136500
78 Occhionero M A, Adams R W. AlSiC, and AlSiC hybrid composites for flip chips, optoelectronics, power, and high brightness LED thermal management solutions. In: Proceedings of the 6th International Conference on Electronic Packaging Technology . 2005, 576-580
79 Hu J, Yang L, Shin M W. Thermal and mechanical analysis of high-power LEDs with ceramic packages. IEEE Transactions on Device and Materials Reliability , 2008, 8(2): 297-303
doi: 10.1109/TDMR.2008.920298
80 Park J K, Shin H D, Park Y S, Park S Y, Hong K P, Kim B M. A suggestion for high power LED package based on LTCC. In: Proceedings of the 56th Electronic Components and Technology Conference . 2006, 1070-1075
81 Shin M W. Thermal design of high-power LED package and system. In: Advanced LEDs for Solid State Lighting . Gwangju: SPIE, 2006, 6355: 635509
82 Yang L, Jang S, Hwang W, Shin M. Thermal analysis of high power GaN-based LEDs with ceramic package. Thermochimica Acta , 2007, 455(1-2): 95-99
doi: 10.1016/j.tca.2006.11.019
83 Carl H Z. New material options for light-emitting diode packaging. In: Light-Emitting Diodes: Research, Manufacture, and Applications VIII . Bellingham: SPIE, 2004, 5366: 173-182
84 Zweben C. Advances in LED packaging and thermal management materials. In: Light-Emitting Diodes: Research, Manufacturing, and Applications XII . San Jose: SPIE, 2008, 6910: 691018
85 Kim K M, Shin S H, Lee Y K, Choi S M, Kwon Y S. Aluminium-based packaging platform for LED using selectively anodising method. Electronics Letters , 2008, 44(1): 24-25
doi: 10.1049/el:20081391
86 Gao S, Hong J, Shin S, Lee Y, Choi S, Yi S. Design optimization on the heat transfer and mechanical reliability of high brightness light emitting diodes (HBLED) package. In: Proceedings of the 58th Electronic Components and Technology Conference . Orlando: IEEE, 2008, 798-803
87 Kai Z, Yuen M M F. Heat spreader with aligned CNTs designed for thermal management of HB-LED packaging and microelectronic packaging. In: Proceedings of the 7th International Conference on Electronic Packaging Technology . 2006, 1-4
88 Zhang K, Yuen M M F, Wang N, Miao J Y, Xiao D G W, fan H B. Thermal interface material with aligned CNT and its application in HB-LED packaging. In: Proceedings of the 56th Electronic Components and Technology Conference . 2006, 177-182
89 Christensen A, Graham S. Thermal effects in packaging high power light emitting diode arrays. Applied Thermal Engineering , 2009, 29(2-3): 364-371
doi: 10.1016/j.applthermaleng.2008.03.019
90 Liu S, Lin T, Luo X B, Chen M X, Jiang X P. A microjet array cooling system for thermal management of active radars and high-brightness LEDs. In: Proceedings of the 56th Electronic Components and Technology Conference . 2006, 1634-1638
91 Luo X B, Liu S. A microjet array cooling system for thermal management of high-brightness LEDs. IEEE Transactions on Advanced Packaging , 2007, 30(3): 475-484
doi: 10.1109/TADVP.2007.898522
92 Luo X B, Chen W, Sun R X, Liu S. Experimental and numerical investigation of a microjet-based cooling system for high power LEDs. Heat Transfer Engineering , 2008, 29(9): 774-781
doi: 10.1080/01457630802053777
93 Liu S, Yang J H, Gan Z Y, Luo X B. Structural optimization of a microjet based cooling system for high power LEDs. International Journal of Thermal Sciences , 2008, 47(8): 1086-1095
doi: 10.1016/j.ijthermalsci.2007.09.005
94 LEDs Magazine. Lumileds recalls some Luxeons, halts production line. 2008, http://ledsmagazine.com/news/5/1/19
95 Hsu Y C, Lin Y K, Chen M H, Tsai C C, Kuang J H, Huang S B, Hu H L, Su Y I, Cheng W H. Failure mechanisms associated with lens shape of high-power LED modules in aging test. IEEE Transactions on Electron Devices , 2008, 55(2): 689-694
doi: 10.1109/TED.2007.911905
96 Hu J Z, Yang L Q, Shin M W. Mechanism and thermal effect of delamination in light-emitting diode packages. Microelectronics Journal , 2007, 38(2): 157-163
doi: 10.1016/j.mejo.2006.08.001
97 Jayasinghe L, Dong T M, Narendran N. Is the thermal resistance coefficient of high-power LEDs constant? In: Seventh International Conference on Solid State Lighting . San Diego: SPIE, 2007, 6669: 666911
98 Meneghini M, Trevisanello L, Sanna C, Mura G, Vanzi M, Meneghesso G, Zanoni E. High temperature electro-optical degradation of InGaN/GaN HBLEDs. Microelectronics Reliability , 2007, 47(9-11): 1625-1629
doi: 10.1016/j.microrel.2007.07.081
99 Su Y K, Chen K C, Lin C L. Ultra high power light-emitting diodes with electroplating technology. In: Proceedings of IEEE Conference on Electron Devices and Solid-State Circuits . 2007, 19-22
100 Trevisanello L R, Meneghini M, Mura G, Sanna C, Buso S, Spiazzi G, Vanzi M, Meneghesso G, Zanoni E. Thermal stability analysis of high brightness LED during high temperature and electrical aging. In: Seventh International Conference on Solid State Lighting . San Diego: SPIE, 2007, 6669: 666913
101 Biber C. LED light emission as a function of thermal conditions. In: Proceedings of the 24th Annual IEEE Semiconductor Thermal Measurement and Management Symposium . 2008, 180-184
102 Buso S, Spiazzi G, Meneghini M, Meneghesso G. Performance degradation of high-brightness light emitting diodes under DC and pulsed bias. IEEE Transactions on Device and Materials Reliability , 2008, 8(2): 312-322
doi: 10.1109/TDMR.2008.916549
103 Hwang N. Failure analysis matrix of light emitting diodes for general lighting applications. In: Proceedings of the 15th International Symposium on the Physical and Failure Analysis of Integrated Circuits . 2008, 1-4
104 Trevisanello L, Meneghini M, Mura G, Vanzi M, Pavesi M, Meneghesso G, Zanoni E. Accelerated life test of high brightness light emitting diodes. IEEE Transactions on Device and Materials Reliability , 2008, 8(2): 304-311
doi: 10.1109/TDMR.2008.919596
105 Lim C H, Jeung W K, Choi S M. LED packaging using high sag rectangular microlens array. In: Micro-Optics, VCSELs, and Photonic Interconnects II: Fabrication, Packaging, and Integration . Strasbourg: SPIE, 2006, 6185: 618516
106 Tsou C F, Huang Y S. Silicon-based packaging platform for light-emitting diode. IEEE Transactions on Advanced Packaging , 2006, 29(3): 607-614
doi: 10.1109/TADVP.2006.875409
107 Wall F, Martin P S, Harbers G. High-power LED package requirements. In: Third International Conference on Solid State Lighting . San Diego: SPIE, 2004, 5187: 85-92
108 Muller G O, Muller-Mach R B, Krames M R, Schmidt P J, Bechtel H H, Meyer J, de Graaf J, Kop T A. US Patent, 20080138919, 2008
109 Fujita S, Yoshihara S, Sakamoto A, Yamamoto S, Tanabe S. YAG glass-ceramic phosphor for white LED (I): background and development. In: Fifth International Conference on Solid State Lighting . San Diego: SPIE, 2005, 5941: 594111
110 Tanabe S, Fujita S, Yoshihara S, Sakamoto A, Yamamoto S. YAG glass-ceramic phosphor for white LED (II): luminescence characteristics. In: Fifth International Conference on Solid State Lighting . San Diego: SPIE, 2005, 5941: 594112
111 Wang H, Lee K S, Ryu J H, Hong C H, Cho Y H. Active packaging method for light-emitting diode lamps with photosensitive epoxy resins. IEEE Photonics Technology Letters , 2008, 20(2): 87-89
doi: 10.1109/LPT.2007.910760
112 Wang H, Ryu J H, Lee K S, Tan C H, Jin L, Li S, Hong C H, Cho Y H, Liu S. Active packing method for blue light-emitting diodes with photosensitive polymerization: formation of self-focusing encapsulates. Optics Express , 2008, 16(6): 3680-3685
doi: 10.1364/OE.16.003680
113 Bortz J C, Shatz N E, Pitou D. Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target. In: Novel Optical Systems Design and Optimization III . San Diego: SPIE, 2000, 4092: 130-138
114 Cvetkovic A, Dross O, Chaves J, Benítez P, Mi?ano J C, Mohedano R. Etendue preserving mixing and projection optics for high brightness LEDs applied to automotive headlamps. In: International Optical Design Conference 2006 . Vancouver: SPIE, 2006, 6342: 63420R
115 Wang L, Qian K Y, Luo Y. Discontinuous free-form lens design for prescribed irradiance. Applied Optics , 2007, 46(18): 3716-3723
doi: 10.1364/AO.46.003716
116 Ding Y, Liu X, Zheng Z R, Gu P F. Freeform LED lens for uniform illumination. Optics Express , 2008, 16(17): 12958-12966
doi: 10.1364/OE.16.012958
117 Wang K, Liu S, Luo X B, Liu Z Y, Chen F. Optical analysis of a 3W light-emitting diode (LED) MR16 lamp. In: Proceedings of International Conference on Electronic Packaging Technology and High Density Packaging . 2008, 4607028-1-4607028-5
Related articles from Frontiers Journals
[1] Yingqin PENG,Yuli CHEN,Qi SUI,Dawei WANG,Dongyu GENG,Freddy FU,Zhaohui LI. In-band OSNR monitoring based on low-bandwidth coherent receiver and tunable laser[J]. Front. Optoelectron., 2016, 9(3): 526-530.
[2] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[3] Junxiang KE,Lilin YI,Tongtong HOU,Weisheng HU. Key technologies in chaotic optical communications[J]. Front. Optoelectron., 2016, 9(3): 508-517.
[4] Li LIU,Yunhong DING,Xinlun CAI,Jianji DONG,Xinliang ZHANG. Route-asymmetrical light transmission of a fiber-chip-fiber optomechanical system[J]. Front. Optoelectron., 2016, 9(3): 489-496.
[5] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[6] Ting YANG,Shasha LIAO,Li LIU,Jianji DONG. Large-range tunable fractional-order differentiator based on cascaded microring resonators[J]. Front. Optoelectron., 2016, 9(3): 399-405.
[7] Yi YU,Evarist PALUSHANI,Mikkel HEUCK,Leif Katsuo OXENLØWE,Kresten YVIND,Jesper MØRK. Switching dynamics in InP photonic-crystal nanocavity[J]. Front. Optoelectron., 2016, 9(3): 395-398.
[8] Xinliang ZHANG,Zhao WU. Linear optical signal processing with optical filters: a tutorial[J]. Front. Optoelectron., 2016, 9(3): 377-389.
[9] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[10] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[11] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[12] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[13] Zhicheng LIU,Hao SUN,Leijun YIN,Yongzhuo LI,Jianxing ZHANG,Cun-Zheng NING. Single crystal erbium compound nanowires as high gain material for on-chip light source applications[J]. Front. Optoelectron., 2016, 9(2): 312-317.
[14] Christian CARBONI,Guifang LI. Novel applications of space-division multiplexing[J]. Front. Optoelectron., 2016, 9(2): 270-276.
[15] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed