Frontiers of Mechanical Engineering

Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Comprehensive analysis of the influence of structural and dynamic parameters on the accuracy of nano-precision positioning stages
Chengyuan LIANG, Fang YUAN, Xuedong CHEN, Wei JIANG, Lizhan ZENG, Xin LUO
Front. Mech. Eng.    2019, 14 (3): 255-272.   https://doi.org/10.1007/s11465-019-0538-x
Abstract   HTML   PDF (3887KB)

Nano-precision positioning stages are characterized by rigid-flexible coupling systems. The complex dynamic characteristics of mechanical structure of a stage, which are determined by structural and dynamic parameters, exert a serious influence on the accuracy of its motion and measurement. Systematic evaluation of such influence is essential for the design and improvement of stages. A systematic approach to modeling the dynamic accuracy of a nano-precision positioning stage is developed in this work by integrating a multi-rigid-body dynamic model of the mechanical system and measurement system models. The influence of structural and dynamic parameters, including aerostatic bearing configurations, motion plane errors, foundation vibrations, and positions of the acting points of driving forces, on dynamic accuracy is investigated by adopting the H-type configured stage as an example. The approach is programmed and integrated into a software framework that supports the dynamic design of nano-precision positioning stages. The software framework is then applied to the design of a nano-precision positioning stage used in a packaging lithography machine.

Table and Figures | Reference | Related Articles | Metrics
Connected morphable components-based multiscale topology optimization
Jiadong DENG, Claus B. W. PEDERSEN, Wei CHEN
Front. Mech. Eng.    2019, 14 (2): 129-140.   https://doi.org/10.1007/s11465-019-0532-3
Abstract   HTML   PDF (3079KB)

The advances of manufacturing techniques, such as additive manufacturing, have provided unprecedented opportunities for producing multiscale structures with intricate latticed/cellular material microstructures to meet the increasing demands for parts with customized functionalities. However, there are still difficulties for the state-of-the-art multiscale topology optimization (TO) methods to achieve manufacturable multiscale designs with cellular materials, partially due to the disconnectivity issue when tiling material microstructures. This paper attempts to address the disconnectivity issue by extending component-based TO methodology to multiscale structural design. An effective linkage scheme to guarantee smooth transitions between neighboring material microstructures (unit cells) is devised and investigated. Associated with the advantages of components-based TO, the number of design variables is greatly reduced in multiscale TO design. Homogenization is employed to calculate the effective material properties of the porous materials and to correlate the macro/structural scale with the micro/material scale. Sensitivities of the objective function with respect to the geometrical parameters of each component in each material microstructure have been derived using the adjoint method. Numerical examples demonstrate that multiscale structures with well-connected material microstructures or graded/layered material microstructures are realized.

Table and Figures | Reference | Related Articles | Metrics
Creative design inspired by biological knowledge: Technologies and methods
Runhua TAN, Wei LIU, Guozhong CAO, Yuan SHI
Front. Mech. Eng.    2019, 14 (1): 1-14.   https://doi.org/10.1007/s11465-018-0511-0
Abstract   HTML   PDF (403KB)

Biological knowledge is becoming an important source of inspiration for developing creative solutions to engineering design problems and even has a huge potential in formulating ideas that can help firms compete successfully in a dynamic market. To identify the technologies and methods that can facilitate the development of biologically inspired creative designs, this research briefly reviews the existing biological-knowledge-based theories and methods and examines the application of biological-knowledge-inspired designs in various fields. Afterward, this research thoroughly examines the four dimensions of key technologies that underlie the biologically inspired design (BID) process. This research then discusses the future development trends of the BID process before presenting the conclusions.

Table and Figures | Reference | Related Articles | Metrics
Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review
Y. Luo, S. C. Wu, Y. N. Hu, Y. N. Fu
Front. Mech. Eng.    2018, 13 (4): 461-481.   https://doi.org/10.1007/s11465-018-0481-2
Abstract   HTML   PDF (1650KB)

Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomography can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(3)
Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems
Le YANG, Shuo WANG, Jianghua FENG
Front. Mech. Eng.    2018, 13 (3): 329-353.   https://doi.org/10.1007/s11465-018-0466-1
Abstract   HTML   PDF (1205KB)

Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifier-inverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifier-inverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(1)
Special issue: Near-net shaping technology
Dequn LI, Dongming GUO, Qingxue HUANG, Yanchun LOU
Front. Mech. Eng.    2018, 13 (1): 1-2.   https://doi.org/10.1007/s11465-018-0497-7
Abstract   HTML   PDF (51KB)
Reference | Related Articles | Metrics
Special issue: Micro-electromechanical systems (MEMS)
Zhuangde JIANG
Front. Mech. Eng.    2017, 12 (4): 457-458.   https://doi.org/10.1007/s11465-017-0492-4
Abstract   HTML   PDF (48KB)
Reference | Related Articles | Metrics
Special issue: Wind turbine dynamic modeling, condition monitoring and diagnosis
Zheng YOU, Jinji GAO, Fulei CHU, Tielin SHI
Front. Mech. Eng.    2017, 12 (3): 279-280.   https://doi.org/10.1007/s11465-017-0476-4
Abstract   HTML   PDF (52KB)
Reference | Related Articles | Metrics
Review of self-referenced measurement algorithms: Bridging lateral shearing interferometry and multi-probe error separation
Dede ZHAI, Shanyong CHEN, Ziqiang YIN, Shengyi LI
Front. Mech. Eng.    2017, 12 (2): 143-157.   https://doi.org/10.1007/s11465-017-0432-3
Abstract   HTML   PDF (527KB)

With the development of new materials and ultra-precision processing technology, the sizes of measured objects increase, and the requirements for machining accuracy and surface quality become more exacting. The traditional measurement method based on reference datum is inadequate for measuring a high-precision object when the quality of the reference datum is approximately within the same order as that of the object. Self-referenced measurement techniques provide an effective means when the direct reference-based method cannot satisfy the required measurement or calibration accuracy. This paper discusses the reconstruction algorithms for self-referenced measurement and connects lateral shearing interferometry and multi-probe error separation. In lateral shearing interferometry, the reconstruction algorithms are generally categorized into modal or zonal methods. The multi-probe error separation techniques for straightness measurement are broadly divided into two-point and three-point methods. The common features of the lateral shearing interferometry method and the multi-probe error separation method are identified. We conclude that the reconstruction principle in lateral shearing interferometry is similar to the two-point method in error separation on the condition that no yaw error exists. This similarity may provide a basis or inspiration for the development of both classes of methods.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(1)
Special issue: Ultra-precision machining
Zhuangde JIANG,Dongming GUO
Front. Mech. Eng.    2017, 12 (1): 1-2.   https://doi.org/10.1007/s11465-017-0445-y
Abstract   HTML   PDF (52KB)
Reference | Related Articles | Metrics
Page 1 of 3 27 records