Frontiers of Mechanical Engineering

Online First
The manuscripts published below will continue to be available from this page until they are assigned to an issue.
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires
Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG
Front. Mech. Eng.    https://doi.org/10.1007/s11465-020-0595-1
Abstract   HTML   PDF (1532KB)

Carbon fiber reinforced polymer (CFRP) composites have excellent mechanical properties, specifically, high specific stiffness and strength. However, most CFRP composites exhibit poor impact resistance. To overcome this limitation, this study presents a new plain-woven CFRP composite embedded with superelastic shape memory alloy (SMA) wires. Composite specimens are fabricated using the vacuum-assisted resin injection method. Drop-weight impact tests are conducted on composite specimens with and without SMA wires to evaluate the improvement of impact resistance. The material models of the CFRP composite and superelastic SMA wire are introduced and implemented into a finite element (FE) software by the explicit user-defined material subroutine. FE simulations of the drop-weight impact tests are performed to reveal the superelastic deformation and debonding failure of the SMA inserts. Improvement of the energy absorption capacity and toughness of the SMA-CFRP composite is confirmed by the comparison results.

Table and Figures | Reference | Related Articles | Metrics
Influence factors on natural frequencies of composite materials
Bo WANG, Feng ZHAO, Zixu ZHAO, Kunpeng XU
Front. Mech. Eng.    https://doi.org/10.1007/s11465-020-0592-4
Abstract   HTML   PDF (3390KB)

Compared with traditional materials, composite materials have lower specific gravity, larger specific strength, larger specific modulus, and better designability structure and structural performance. However, the variability of structural properties hinders the control and prediction of the performance of composite materials. In this work, the Rayleigh–Ritz and orthogonal polynomial methods were used to derive the dynamic equations of composite materials and obtain the natural frequency expressions on the basis of the constitutive model of laminated composite materials. The correctness of the analytical model was verified by modal hammering and frequency sweep tests. On the basis of the established theoretical model, the influencing factors, including layers, thickness, and fiber angles, on the natural frequencies of laminated composites were analyzed. Furthermore, the coupling effects of layers, fiber angle, and lay-up sequence on the natural frequencies of composites were studied. Research results indicated that the proposed method could accurately and effectively analyze the influence of single and multiple factors on the natural frequencies of composite materials. Hence, this work provides a theoretical basis for preparing composite materials with different natural frequencies and meeting the requirements of different working conditions.

Table and Figures | Reference | Related Articles | Metrics
Damage propagation and strength prediction of a single-lap interference-fit laminate structure
Peng ZOU, Xiangming CHEN, Hao CHEN, Guanhua XU
Front. Mech. Eng.    https://doi.org/10.1007/s11465-020-0591-5
Abstract   HTML   PDF (5901KB)

Experimental and finite element research was conducted on the bolted interference fit of a single-lap laminated structure to reveal the damage propagation mechanism and strength change law. A typical single-lap statically loading experiment was performed, and a finite element damage prediction model was built based on intralaminar progress damage theory. The model was programmed with a user subroutine and an interlaminar cohesive zone method. The deformation and damage propagation of the specimen were analyzed, and the failure mechanism of intralaminar and interlaminar damage during loading was discussed. The effect of secondary bending moment on load translation and damage distribution was revealed. The experimental and simulated load–displacement curves were compared to validate the developed model’s reliability, and the ultimate bearing strengths under different fit percentages were predicted. An optimal percentage was also recommended.

Table and Figures | Reference | Related Articles | Metrics
Evaluation of measurement uncertainty of the high-speed variable-slit system based on the Monte Carlo method
Yin ZHANG, Jianwei WU, Kunpeng XING, Zhongpu WEN, Jiubin TAN
Front. Mech. Eng.    https://doi.org/10.1007/s11465-020-0589-z
Abstract   HTML   PDF (4973KB)

This paper presents a dynamic and static error transfer model and uncertainty evaluation method for a high-speed variable-slit system based on a two-dimensional orthogonal double-layer air-floating guide rail structure. The motion accuracy of the scanning blade is affected by both the moving component it is attached to and the moving component of the following blade during high-speed motion. First, an error transfer model of the high-speed variable-slit system is established, and the influence coefficients are calculated for each source of error associated with the accuracy of the blade motion. Then, the maximum range of each error source is determined by simulation and experiment. Finally, the uncertainty of the blade displacement measurement is evaluated using the Monte Carlo method. The proposed model can evaluate the performance of the complex mechanical system and be used to guide the design.

Table and Figures | Reference | Related Articles | Metrics
Analysis and control of micro-stepping characteristics of ultrasonic motor
Ning CHEN, Jieji ZHENG, Xianliang JIANG, Shixun FAN, Dapeng FAN
Front. Mech. Eng.    https://doi.org/10.1007/s11465-019-0577-3
Abstract   HTML   PDF (3259KB)

Micro-stepping motion of ultrasonic motors satisfies biomedical applications, such as cell operation and nuclear magnetic resonance, which require a precise compact-structure non-magnetization positioning device. When the pulse number is relatively small, the stopping characteristics have a non-negligible effect on the entire stepwise process. However, few studies have been conducted to show the rule of the open-loop stepwise motion, especially the shutdown stage. In this study, the modal differences of the shutdown stage are found connected with amplitude and velocity at the turn-off instant. Changes of the length in the contact area and driving zone as well as the input currents, vibration states, output torque, and axial pressure are derived by a simulation model to further explore the rules. The speed curves and vibration results in functions of different pulse numbers are compared, and the stepwise motion can be described by a two-stage two-order transfer function. A test workbench based on the Field Programmable Gate Array is built for acquiring the speed, currents, and feedback voltages of the startup–shutdown stage accurately with the help of its excellent synchronization performances. Therefore, stator vibration, rotor velocity, and terminal displacements under different pulse numbers can be compared. Moreover, the two-stage two-order model is identified on the stepwise speed curves, and the fitness over 85% between the simulation and test verifies the model availability. Finally, with the optimization of the pulse number, the motor achieves 3.3 µrad in clockwise and counterclockwise direction.

Table and Figures | Reference | Related Articles | Metrics
New technique of precision necking for long tubes with variable wall thickness
Yongqiang GUO, Chunguo XU, Jingtao HAN, Zhengyu WANG
Front. Mech. Eng.    https://doi.org/10.1007/s11465-019-0565-7
Abstract   HTML   PDF (1590KB)

This study analyzed the deformation law of rear axles with variable wall thickness under bidirectional horizontal extrusion and found that necking was accompanied by upsetting deformation through theoretical calculation, numerical simulation, and experimental research. The sequence and occurrence of necking and upsetting deformations were obtained. A theory of deformation was proposed by controlling the distribution of temperature field. Effective processes to control the wall thickness of rear axle at different positions were also proposed. The ultimate limit deformation with a necking coefficient of 0.68 could be achieved using the temperature gradient coefficient. A new technology of two-step heating and two-step extrusion for a 13 t rear axle was developed, qualified test samples were obtained, and suggestions for further industrial application were put forward.

Table and Figures | Reference | Related Articles | Metrics
First page | Prev page | Next page | Last page Page 1 of 1, 6 articles found