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Abstract Topology optimization is a pioneer design
method that can provide various candidates with high
mechanical properties. However, high resolution is desired
for optimum structures, but it normally leads to a
computationally intractable puzzle, especially for the
solid isotropic material with penalization (SIMP) method.
In this study, an efficient, high-resolution topology
optimization method is developed based on the super-
resolution convolutional neural network (SRCNN) tech-
nique in the framework of SIMP. SRCNN involves four
processes, namely, refinement, path extraction and repre-
sentation, nonlinear mapping, and image reconstruction.
High computational efficiency is achieved with a pooling
strategy that can balance the number of finite element
analyses and the output mesh in the optimization process.
A combined treatment method that uses 2D SRCNN is
built as another speed-up strategy to reduce the high
computational cost and memory requirements for 3D
topology optimization problems. Typical examples show
that the high-resolution topology optimization method
using SRCNN demonstrates excellent applicability and
high efficiency when used for 2D and 3D problems with
arbitrary boundary conditions, any design domain shape,
and varied load.

Keywords topology optimization, convolutional neural
network, high resolution, density-based

1 Introduction

The work of Bendsøe and Kikuchi [1] is the basis of
topology optimization, and it has been followed by several
excellent topological optimization methods to solve
material distribution problems under given goals and
constraints; examples include solid isotropic material with
penalization (SIMP) [2–4], evolutionary structural optimi-
zation/bi-directional evolutionary structural optimization
(BESO) [5–9], level-set-based topology optimization [10–
14], moving morphable components/void [15–17], and
bubble method [18]. As topology optimization approaches
mature and gradually shift their application from mathe-
matical theory to practical engineering [19–21], the desire
for developing existing topological optimization methods
to achieve the capacity for dealing with large-scale or high-
precision structures increases. Typical large-scale objects
include those in architecture and aerospace [19,22,23].
Bionic bones [24], convection radiators [25], and mechani-
cal metamaterials [26] are examples of objects that require
high-precision design. Topology optimization is an
excellent design tool in engineering, but it is only suitable
for the design of normal-sized structures. Resolution is the
main obstacle in dealing with large-scale or high-precision
structural design because improving the design resolution
inevitably increases the computational cost. At present,
with an acceptable computing cost, people can only deal
with structures with millions of resolutions. Although
supercomputers have powerful computing power, they are
not available to everyone. Therefore, the application of the
density-based topology optimization method is limited by
resolution.
Several studies have attempted to improve the resolution

of topology optimization designs at an acceptable
computational cost. Several mainstream density-based
topology optimization methods that were developed to
address the aforementioned issue are presented below.
1) Designing the microstructure of elements. Groen and

Sigmund [27] and Wu et al. [28] used the homogenization
method to design the microstructure of elements, and Zhu
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et al. [29] and Wang et al. [30] utilized a pre-designed
microstructure for topology optimization. This method
improves the resolution of the results, but it fails to change
the jagged boundaries caused by coarse elements. Li et al.
[31,32] advocated the use of density-based and level-set-
based methods to design macrostructures and microstruc-
tures, respectively, to ensure the continuity of boundaries.
2) Adaptive adjustment of a discretized mesh. For

tetrahedral meshes, Christiansen et al. [33] used adaptive
theory to move the cell nodes and make the structure
pleasant in appearance. Wang et al. [34] extended the
method to the case with hexahedral meshes. This low-cost,
high-efficiency post-processing method is easy to imple-
ment in common CAD/CAE software. However, it is
highly dependent on the mesh. In addition, the quality of
the final configuration relies on the selected node
adjustment criteria.
3)Multi-resolution topology optimization. This idea was

proposed by Nguyen et al. [35], who separated a design
variable mesh from a displacement mesh and refined it.
Subsequent studies on this subject can be divided into two
main groups depending on the research direction.
(i) Nguyen-Xuan [36] used a hierarchical data structure
called a polytree to refine boundary elements selectively;
the structure improves the quality of the boundary. Leader
et al. [37] and Chin et al. [38] interpolated the node design
variables under a coarse mesh to obtain a refined
displacement mesh that can solve multi-material and
frequency response optimization problems in large-scale
designs. In these methods, the resolution of the finite
element mesh (displacement mesh) is not lower than that of
the design variable mesh, which means that finite element
analysis (FEA) devotes a large amount of time to
optimization. (ii) Meanwhile, other studies opted to
increase the resolution of the design variable mesh and
maintain a coarse finite element mesh. In the work of
Nguyen [35], high-order finite elements were used to
improve algorithm accuracy and efficiency [39]. An
adaptive refinement/coarsening criterion was introduced
to increase the speed of the multi-resolution topology
optimization method [40]. Using the multi-grid method in
the approximate analysis of large problems is an effective
solution [41]. In addition, because the non-uniform rational
basis spline has high continuity, several studies used the
isogeometric analysis method to map the design variables
and the finite element mesh accurately [42,43] or improve
algorithm efficiency [44]. Recently, Wang et al. [45]
proposed a novel multi-resolution topology optimization
method. In this method, extended finite element method is
introduced into the BESO method to establish a multi-
resolution framework that can capture non-smooth dis-
placement fields across material interfaces.
4) Adaptive mesh refinement. Kim and Yoon [46] used

separable wavelet transform to improve mesh resolution
continuously during optimization, which can reduce the
initial calculation amount. Stainko [47] proposed a

solution method that involves adaptive multilevel techni-
ques; the method focuses only on elements near the
boundary. Liao et al. [48] designed a partial update rule
that concentrates all computational power on changeable
elements. These studies improved the computational
efficiency of large-scale optimization problems to a certain
extent. The addition of adaptive criteria also improves
mesh independence.
The aforementioned studies have provided valuable

algorithmic-level contributions to the goal of maximizing
design resolution at an acceptable cost. Owing to the rapid
development of computer science, several studies have
used advanced algorithms or hardware (including GPU
and supercomputers) to achieve the required high-resolu-
tion design [49–52]. Algorithm development and hardware
update are complementary, not contradictory. An excellent
algorithm and efficient hardware can produce desirable
results.
Notably, computational methods in the form of machine

learning perform well in the development of algorithms
and hardware. Machine learning can be used to extract
implicit rules from a large amount of historical data, and its
excellent generality comes from training objectives that
contain implicit laws about unknown data. Machine
learning has a wide range of current applications, which
include data mining, computer vision, and medical
diagnosis. Deep learning, which belongs to machine
learning, has become popular in recent years due to its
high efficiency, plasticity, and universality.
Several scholars have attempted to use data-driven

concepts to complete shape [53,54] and topology optimi-
zation design. Sosnovik and Oseledets [55] inputted the
configuration during optimization and the corresponding
gradient information into the neural network to obtain the
final optimized configuration directly. This method can
effectively improve optimization speed. Banga et al. [56]
used a 3D encoder–decoder convolutional neural network,
which is more efficient than the usual convolutional neural
network, to perform 3D topology optimization. The
number of design variables in this study was 12�24�12,
which is small for 3D samples. This number of design
variables indicates the huge sample demand and calcula-
tion cost of 3D convolutional neural networks. Zhang et al.
[57] directly obtained the final configuration by inputting
the displacement and stress information of the initial
design into the neural network at a definitive mesh
resolution. This method has good versatility at a given
mesh resolution but requires retraining the neural network
for other structures with a different resolution. Li et al. [58]
implemented topology optimization without iteration by
using a generative adversarial network (GAN) and used
another GAN as a post-processing method to improve the
resolution of the final configuration.
However, the traditional multi-resolution topology

optimization method has two shortcomings, namely,
problems in arbitrary mapping and computational
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efficiency. Mapping must be performed between the FEA
mesh and the design variable mesh in the multi-resolution
topology optimization method. Given that mapping from
low resolution to high resolution differs for distinct
structural features, artificially designing mappings for
different features is difficult. Deep learning can intelli-
gently extract structural features. In the subsequent process
of extracting structural features, different structural
features possess different mappings. Most neural networks
have a fixed amount of input layer data, which directly
affects the versatility of topology optimization methods.
This study selects the super-resolution convolutional

neural network (SRCNN) framework [59] with good
applicability to enhance the resolution of topology
optimization design. Two strategies, namely, a pooling
strategy for mesh balance and a combined treatment
method using 2D SRCNN, are developed to ease the
computational burden in the high-resolution topology
optimization (HRTO) method. The proposed method
demonstrates high versatility for 2D and 3D problems
with any design domain shape, arbitrary boundary
conditions, and any load case.
The remainder of this paper is organized as follows.

Section 2 describes the density-based topology optimiza-
tion method. Section 3 introduces SRCNNs. Section 4
presents the implementation of the proposed methodology,
and Section 5 shows some numerical examples. The
conclusions are provided in Section 6.

2 Density-based topology optimization
methods

This work is performed under the framework of density-
based topology optimization methods. Under the guidance
of the classic SIMP method [2,3,60], a mathematical
description of the topology optimization problem and the
entire topology optimization process are presented in this
section.
Density-based topology optimization is a method for

solving the 0/1 value of the relative density � of each
element in a given design domain Ω that has been
discretized into finite elements. The aim is to find the
minimum compliance structure under the target volume
constraints. The mathematical description of the problem is
as follows:

min
x

cðxÞ ¼ UTKU ,

s:t: V ðxÞ£V *,

KU ¼ F,

0 < xmin£x < 1,

(1)

where U and F are the global displacement and force
vectors, respectively, K is the global stiffness matrix, x is
the design variable, xmin is the minimum relative density,

and V ðxÞ and V * are the material and target volumes,
respectively. In this study, the following penalty interpola-
tion method of SIMP [3] is used to combine the element
stiffness matrix into a global stiffness matrix:

Ei ¼ xpi E0, (2)

where Ei and E0 are the Young’s modulus of element i and
the basic material, respectively. The penalization exponent
is usually set to p ¼ 3 to push the median value of the
design variable close to the 0–1 solution.

K ¼
XN
i¼1

kiðEiÞ, (3)

where N represents the total number of elements in the
design domain and ki refers to the stiffness matrix of ith
element. Sensitivity can be obtained by deriving the
objective function for the design variables of each element.
To suppress numerical instabilities, we use the filter
scheme proposed by Sigmund [3]. Then, the optimality
criteria (OC) method is utilized to solve this topological
optimization problem. The following text shows the basic
concepts of SRCNN and how SRCNN is implemented in
the proposed topology optimization framework.

3 Super-resolution convolutional neural
network

In the SRCNN framework in the present work, four
classical topological optimization models are selected as
training samples, and each model contains 20 different
cases. In the training process, several samples are selected
from the training sample set at each iteration step to ensure
the rationality of the convolutional neural network.
Sections 3.1 and 3.2 focus on the network architecture
and training process, respectively. The implementation of
SRCNN combined with topology optimization is illu-
strated in the following section.

3.1 Network architecture

A complete process of increasing the resolution requires
four steps, namely, refinement, path extraction and
representation, nonlinear mapping, and image reconstruc-
tion. Refinement is a pre-processing process that uses
quadratic interpolation to upscale the original low-resolu-
tion image. The processed image reaches the targeted pixel
value, but its quality is still not good enough; hence, it is
still regarded as a low-resolution image and marked as L.
This low-resolution image participates in SRCNN as an
input sample. Such a refinement step can improve the
versatility of the algorithm. Next, a series of convolutional
neural network operations are implemented. Path extrac-
tion and representation is a process of extracting features
from low-resolution images by using multiple convolution
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kernels. Nonlinear mapping combines these features and
maps them to the next maps. Then, the image reconstruc-
tion process reconstructs the mapped features into a high-
resolution image, which is denoted by H.
Figure 1 shows the four steps of SRCNN from left to

right. The upper left corner of Fig. 1 shows the size of three
convolution kernels (W1, W2, and W3) and their corre-
sponding operation results. The changes in the data
structure are shown below each image. Specifically,
nelx�nely is the design variable resolution of the topology
optimization model; USF is the upscaling factor; f1, f2, and
f3 are the size of convolution kernels; and n1 and n2 are the
depth of the neural network. From the connection in Fig. 1,
we can understand the transmission path of data in the
neural network. The structural components of each step are
specified separately in the subsequent subsections. Refine-
ment, as a pre-processing method, is not the focus of neural
networks. We select bicubic interpolation as the solution of
the refinement process because the bicubic interpolation
method is convenient to use, and its computational
efficiency is high. This operation is no longer described
separately.

3.1.1 Patch extraction and representation

The main function of this part is to extract features from
low-resolution image L. For easy understanding, each
convolution kernel can be imagined as a filter. The features
extracted by each convolution kernel constitute the low-
resolution feature map F1ðLÞ of SRCNN. This operation
can be expressed as follows:

F1ðLÞ ¼ maxð0, W 1 � Lþ B1Þ, (4)

where W 1 and B1 are convolution kernels and biases,
respectively. W 1 contains n1 convolution kernels of size
f1 � f1. We assume that the size of L is X � Y , and the size
of F1ðLÞ is X � Y � n1. Each convolution kernel is
independently convolved with L. B1 is a vector of length
n1, and it corresponds to the convolution kernels of W 1 in
order. Notably, the operator “�” represents the “same” type

of convolution operation, which needs to expand ðf1 – 1Þ=2
circles (f1 generally takes an odd number) around the
periphery of L. This type of convolution ensures that the
dimensions of maps will not decrease in the next process.
Unless otherwise specified in the subsequent operations,
the operator “�” defaults to the “same” type of convolution
operation. Then, the rectified linear unit (ReLU,
maxð0, xÞ) is used as an activation function to map the
calculation results to the low-resolution feature maps.

3.1.2 Nonlinear mapping

The second convolution layer maps the low-resolution
feature maps F1ðLÞ to the high-resolution feature maps
F2ðLÞ. In accordance with the work of Dong et al. [59], we
select W 2 with a size of 5�5. The operational formula for
this layer is expressed as follows:

F2ðLÞ ¼ max
�
0, W 2 � F1ðLÞ þ B2

�
, (5)

where W 2 contains n2 convolution kernels of sizes f2 �
f2 � n1 and B2 is a bias vector with a length of n2. The size
of F1ðLÞ is X � Y � n1, and the size of F2ðLÞ is
X � Y � n2. The nonlinearity of this convolutional layer
is strong and results in a significantly increased training
time for neural networks.

3.1.3 Image reconstruction

To obtain a high-resolution design from the high-resolution
feature map F2ðLÞ, we need a convolutional layer to
reconstruct these features. The formula of the last layer is

H ¼ min
�
1, max

�
0, W 3 � F2ðLÞ þ B3

��
, (6)

where W 3 is a convolution kernel of size f3 � f3 � n2 and
B3 is a bias value of size 1�1. Modifications are made to
the ReLU activation function, as shown in Eq. (7), to
match the results to the topology-optimized design variable
range. The reconstructed map value range is limited to
between 0 and 1.

Fig. 1 Relative position and connection state of SRCNN operations. SRCNN: Super-resolution convolutional neural network.
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ReLUðxÞ ¼ min
�
1, maxð0, xÞ

�
: (7)

3.1.4 Network calculation steps

In the SRCNN framework, the “refinement” part uses
bicubic interpolation to increase the pixels of the input
image in accordance with the upscaling factor. The “path
extraction and representation” part uses n1 convolution
cores to extract data from the image. Each convolution
kernel is similar to the filter used in topology optimization,
and the calculation process does not change the image size.
The F1(L) obtained in this step contains n1 feature maps
with the same size as the input image. In the “nonlinear
mapping” part, n2 convolution kernels are utilized to
convolve n1 feature maps in F1(L). Then, n2 feature maps
with a constant size are obtained to form F2(L). In the final
“image reconstruction” part, F2(L) is scanned with a
convolution kernel. The obtained H contains only one
image with the same size as the input image. Regardless of
the changes in image size, the convolution kernel scans
each pixel and its neighborhood in order. Images of
different sizes generate feature images of different sizes.
The output image is of the same size as the input image.
The following shows the step-by-step calculation

process of SRCNN:
1) Using bicubic interpolation, the number of pixels of

the input low-resolution image with a size of nelx�nely is
increased to USF2�nelx�nely, which is L, according to the
upscaling factor.
2) n1 convolution kernels of size f1�f1 are used to

perform convolution calculations on low-resolution
images L with a size of USF2�nelx�nely.

3) The ReLU activation function is utilized to process
the result of the previous step. We obtain n1 feature maps of
size USF2�nelx�nely, namely, F1(L).
4) A convolution kernel with a size of f2�f2�n1 is

adopted to perform convolution calculation on the feature
map F1(L) of the n1 layer with a size of USF2�nelx�nely.
n1 layers exist in total, and the convolution calculation is
performed layer by layer. The results are added together to
form a feature map with a size of USF2�nelx�nely.
5) n2 convolution kernels of size f2�f2�n1 are available,

so Step 3 needs to be repeated n2 times. Each repetition
produces a new feature map. After each feature map is
processed by the ReLU activation function, and n2 feature
maps of size USF2�nelx�nely, namely F2(L), are derived.
6) A convolution kernel of size f3�f3�n2 is used to

perform convolution calculation on the feature map F2(L)
of the n2 layer of size USF

2�nelx�nely. n2 layers exist in
total, and the convolution calculation is performed layer by
layer.
7) The modified activation function (Eq. (7)) is used to

process the results of Step 6. The results are added to
obtain a high-resolution image of size USF2�nelx�nely.

3.2 Training

The neural network needs to be trained with the network
architecture to learn the entire process from low resolution
to high resolution. Training is the process of estimating and
adjusting network parameters fW1, W2, W3, B1, B2, B3g.
To distinguish between reconstructed and real high-
resolution configurations, we adopt 4 classical topological
optimization models, namely, cantilever beam (Fig. 2(a)),
L-bracket (Fig. 2(b)), T-bracket (Fig. 2(c)), and MBB beam
(Fig. 2(d)). We also use different design domain sizes and

Fig. 2 Presentation of several training samples. This illustration shows 4 types of classical topological optimization models:
(a) Cantilever beam, (b) L-bracket, (c) T-bracket, and (d) MBB beam.
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random load positions. The traditional topology optimiza-
tion method is utilized to calculate training samples of high
and low resolution in 20 different cases for each of the 4
classical models. Only a part of the sample is shown in
Fig. 2. The area filled with slashes in Fig. 2 indicates the
boundary constraints, and the load is replaced by arrows.
Notably, although only these 4 models are used as the base
samples, the versatility of the SRCNN architecture is not
affected. It still works for any size and dimension model,
including non-convex shapes.
With the training sample, the mean square error is

selected as the loss function (Loss) to characterize the
difference between the reconstructed and real configura-
tions.

Loss ¼ 1

n

Xn
N¼1

kHN ðL, Wl, BlÞ –H real
N k2, (8)

where n is the number of training samples selected for each
iteration. The value of l is 1, 2, and 3 corresponding to
three convolution operations. H is the high-resolution
configuration of L reconstructed by SRCNN, and H real is
the high-resolution training sample matched with L. The
random gradient descent method is used to minimize the
loss value during standard backpropagation. The formula
for updating each convolution kernel weight and bias is as
follows:

ΔWlðiþ1Þ ¼ γ� ΔWli – η�
∂Loss
∂Wli

,

Wlðiþ1Þ ¼ Wli þ ΔWlðiþ1Þ,

ΔBlðiþ1Þ ¼ γ� ΔBli – η�
∂Loss
∂Bli

,

Blðiþ1Þ ¼ Bli þ ΔBlðiþ1Þ,

8>>>>>><
>>>>>>:

(9)

where γ is the inheritance coefficient with a value from 0 to
1. η is the learning rate. In this study, γ and η take 0.9 and

10–4, respectively, to ensure network convergence.
∂Loss
∂Wli

and
∂Loss
∂Bli

are the derivatives of the loss for each member

of the convolution kernel W and the biases B, respectively,
and l and i are the number of layers and the iteration step,
respectively. The convolution kernel W and biases B of
each layer take a random number between –1 and 1 as an
initialization value.
The network architecture and training process of

SRCNN are discussed above. Although SRCNN is a
short neural network, using it is enough to establish a link
between high and low resolutions after training. Therefore,
SRCNN has high efficiency and a good mapping effect.
After deriving the SRCNN for topology optimization, we
focus on combining the convolutional neural network with
the topology optimization process in the next section. The
2D SRCNN is then extended to solve 3D HRTO.

4 Details of the optimization

The two preceding sections introduced the classical
topology optimization method and the network architec-
ture and training method of SRCNN. This section shows
the incorporation of SRCNN into the topology optimiza-
tion process, but several details need to be discussed in
advance. First, the difference between large scale and high
precision needs to be clarified. Second, the conversion
between small-sized configuration elements and large-
sized FEA elements should be solved. Lastly, a 2D to 3D
transformation method for SRCNN is proposed to help
extend the 2D HRTO method to 3D cases.

4.1 High-resolution filter

As mentioned in Section 2, topology optimization involves
a sensitivity filter defined by filter radius rmin. For ease of
explanation, this study uses the number of elements as the
unit of the filter radius and defines the actual radius length
as the true radius. The filter radius links mesh size to model
size. Both large scale and high precision are closely related
to the improvement of resolution (i.e., high resolution), but
model size, element size, and filter radius vary. For
example, the output resolution of a case with a size of
X � Y is increased to USF � X � USF � Y . As described
in Section 3.1, USF is the upscaling factor. Compared with
the low-resolution model, the large-scale model increases
only the model size and retains the element size and filter
radius. The high-precision model’s size does not change,
but as the element size decreases, the filter radius increases.
For a specific case, Table 1 shows a base model with a size
of 200�100 and a filter radius of 3 (the number of elements
is used as the unit of the filter radius). The changes in large
scale and high precision when USF has a value of 4 are
displayed in Table 1. The element edge length is used as
the filter radius. The value of the filter radius needs to be
changed for different meshes and enhancement modes to
keep the absolute radius constant. Table 1 indicates that the
high-precision filter radius selected intuitively is 12, but
the filter radius used for the high-precision images in the
training set is 15. We use Fig. 3 to explain this difference.
Figure 3 shows how the filter radius changes with

increasing resolution. In Fig. 3, the blue circular area and
the large blue element represent the filter region and the
filtered element of the low-resolution base model with a
filter radius of 3, respectively. Table 1 indicates that the
model size and finite element mesh are increased to
800�400 when the intuitive choice deals with large-scale
models. The filter radius is maintained at 3, which
corresponds to the yellow area in Fig. 3. For high-precision
models, the model size remains to be 200�100, but the
finite element mesh is increased to 800�400 and the filter
radius is increased to 12 (red area in Fig. 3).
We found that the high-precision filter region of the
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intuitive choice in Fig. 3 does not include all the filtered
elements with low resolution. SRCNN relies on data.
Therefore, to ensure that the training set of the neural
network contains all the necessary data, we used the
following filter radius conversion formula for the SRCNN
training set:

rHmin ¼ ðrLmin þ 1Þ � USF – 1,

rLmin ¼ ðrHmin þ 1Þ=USF – 1,

(
(10)

where rHmin and rLmin are the filter radius of the high- and
low-resolution meshes, respectively, and USF is the
upscaling factor. As shown in Table 1, the training set
using the filter radius conversion formula has a high-
precision filter radius of 15, which corresponds to the green
area in Fig. 3. In this way, the filter area contains all the
necessary data.

4.2 Pooling strategy

Pooling is a concept in convolutional neural networks that
aims to reduce network dimension. Inspired by this
concept, we attempted to balance the number of FEAs
and output meshes in the optimization process. The
pooling of convolutional neural networks considers
reverse operations and generally uses average pooling or

maximum pooling. Topology optimization does not
require reverse pooling operations, so the options for
pooling are numerous. In this study, we used the mean of
the fine elements corresponding to the corners of the coarse
cells as the pooling value, as shown in Fig. 4. The
computational cost can be controlled well through this
pooling method.

4.3 Numerical implementation

A HRTO method can be established by implementing
SRCNN and pooling strategies, as shown in Fig. 5. HRTO
separates the output configuration mesh from the finite
element mesh through SRCNN, and pooling connects
them. Therefore, the high-resolution information obtained

Table 1 Model data of different high-resolution transformations

Method Enhancement mode Model size FEA mesh Filter radius Output resolution

Low-resolution Basic model 200�100 200�100 3 200�100

Intuitive choice Large-scale 800�400 800�400 3 800�400

High-precision 200�100 800�400 12 800�400

Training set Large-scale 800�400 800�400 3 800�400

High-precision 200�100 800�400 15 800�400

Fig. 3 Filter region and filtered elements of different high-resolution transformations.

Fig. 4 Pooling strategy with corner mean sampling.
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by SRCNN can still affect the FEA while maintaining an
efficient computation. In the HRTO process, the stabilizer
and convergence criteria used in the BESO method [7] are
introduced to improve convergence. If the filter scheme [3]
can smooth the sensitivity in space, then the stabilizer will
smooth the sensitivity in time.
The procedure of the presented HRTO method is given

as follows:
1) The FEA mesh of the design domain and its load and

boundary conditions are defined. Then, an initial design
variable value (0 or 1) is assigned to each element.
2) The equilibrium equation is calculated using FEA.
3) The sensitivity of individual elements is calculated

using the adjoint method.
4) A filter [3] is used to smooth the sensitivity spatially

and a stabilizer [7] to smooth the sensitivity temporally.
5) The design variables are updated with the OC

method.
6) The resolution of the design variables is increased

with SRCNN.
7) Whether the optimization design satisfies the conver-

gence condition error ¼ jXN

i¼1
ðck – iþ1 – ck –N – iþ1ÞjXN

i¼1
ck – iþ1

£

0:001 is determined. If it does not, then pooling will be
executed to reduce the design resolution.
8) Steps 2–7 are repeated until the convergence

condition is satisfied.

4.4 Combination treatment of 3D models

We attempted to extend the proposed strategy to deal with
3D cases. Mathematically, a 3D convolutional neural
network is achievable. In reality, huge training set and high
computational cost are the main obstacles to the strategy’s
application. Therefore, we used 2D SRCNN instead of 3D
SRCNN operations to process 3D elements from three
directions. Figure 6 shows the refinement process for an
element in a 3D model with a USF of 4; the arrow
represents the normal direction of the 2D SRCNN
processing plane. After one processing has been performed
in each of the three directions, an element of 1�1�1 is
gradually shifted to 16�16�16 elements. When SRCNN
is used to process 3D examples in three directions, the
model can be regarded as the accumulation of multi-layer
images. SRCNN processes each layer independently in
three directions in sequence. For example, for an l�m�n
3D model, the front to back direction can be regarded as
the accumulation of n images of size l�m. After each
image is processed by SRCNN, it becomes a 4l�4m
image, and the total of these images is n. At this time, the
size of this 3D model is 4l�4m�n, which can be regarded
as a stack of 4l images of size 4m�n from top to bottom.
After these images are processed by SRCNN, the size
becomes 16m�4n. Currently, the size of this 3D model is
4l�16m�4n. From right to left, it can be viewed as a
superposition of 16m images with a size of 4l�4n. After
each layer of images is processed by SRCNN, the final size
of this model becomes 16l�16m�16n. The role of
SRCNN in topology optimization and the different
processing methods of 2D and 3D models have been
determined at this point. The next section shows how the
method works by using several numerical examples.

5 Numerical examples

This section uses the HRTO method to solve the topology
optimization problem. We adopted the efficient topology
optimization code presented by Andreassen et al. [61] as
the base program. We referred to this efficient topology
optimization code based on the SIMP method as the
conventional method. All examples were implemented on
the same computer, and the hardware included an Inter(R)
Xeon(R) CPU E5-2689 v4 @ 3.10 GHz with 256 G of
RAM. None of them used GPU parallelism.

5.1 2D numerical examples

Figure 7 shows the two 2D examples we prepared. The
load forms, boundary conditions, and design domains of
the two examples differ from those in the training set.
Figure 7(a) shows a barrier structure. An irregular, empty,
non-design domain can be seen at the bottom left, and it
makes the structure appear like a shape of the number 7. A

Fig. 5 High-resolution topology optimization method.
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uniform load is applied to the left, and all the degrees of
freedom at the bottom node are fixed. The middle of the
structure has a ringed, non-design domain, which trans-
forms the structure into a non-convex figure. Figure 7(b)
presents a sandwich structure with all degrees of freedom
on the lower surface fixed. Symmetry conditions are set on
the left and right boundaries of the design domain. The
upper surface has a layer of solid non-design domain
simulation splint, and uniform load is applied on the splint.
The low-resolution image of the barrier structure from

Fig. 7(a) shown in Fig. 8(a) has a 210�210 mesh and a
filter radius of 4, and the objective function value of the
low-resolution structure is 91.495. In Fig. 8, the filter
radius and objective function are replaced by rmin and cobj,
respectively. Figures 8(b)–8(f) present high-resolution
images under various strategies, and they have the same
840�840 high-resolution mesh. Figures 8(b) and 8(c)
show high-precision and large-scale images calculated
using the conventional method. For the conventional
method, the filter radius of the high-precision image is 19
according to Eq. (10). This filter radius makes the high-
precision configuration almost consistent with the low-
resolution images. The high-precision objective function
value calculated by the conventional method is 97.613.
However, the large-scale graphic with a filter radius of 4
has clear boundaries and fine features, and the objective
function value is only 84.179. As shown in Fig. 8(d), when
only SRCNN is used as a post-processing solution to
calculate high-resolution graphics, the resulting structure is
destroyed. This post-processing solution is unavailable.
Figures 8(e) and 8(f) present the high-precision and large-

scale structures calculated by HRTO, respectively. The
filter radius is 4 because their FEA uses a coarse mesh.
HRTO high-precision graphics have many materials
arranged near the ring because SRCNN concentrates the
gray elements around the ring in the coarse mesh, and the
features of other areas are reduced. By contrast, the HRTO
large-scale configuration has many detailed features near
the left-end face. Given that HRTO can effectively
concentrate gray-scale elements, the two HRTO cases
have clear boundaries, and their objective function values
are smaller than the corresponding structures calculated by
conventional methods. The objective function of the
HRTO high-precision structure is 81.168, and the objective
function of the HRTO large-scale structure is 83.348.
We also tested the sandwich structure in Fig. 7(b). In

Fig. 9, rmin and cobj are the filter radius and objective
function, respectively. The low-resolution image shown in
Fig. 9(a) has a 200�140 mesh, a filter radius of 4, and
objective function value of 2.0214. Figures 9(b)–9(f) show
high-resolution images under the various strategies, and
they all have a high-resolution mesh of 800�560. Figures
9(b) and 9(c) present the high-precision and large-scale
images calculated by a conventional method, respectively.
When the conventional method is used, the high-precision
image with a filtering radius of 19 becomes similar to the
low-resolution image, and the objective function value of
the high-precision structure is 2.0715. The large-scale
graph with 4 as the filter radius has clear boundaries, fine
features, and an objective function value of 1.9335. Figure
9(d) shows a high-resolution image calculated using
SRCNN as a post-processing scheme. The image has

Fig. 7 Design domain and boundary conditions of two 2D examples: (a) A barrier structure with a hole and (b) a sandwich structure with
symmetrical boundary conditions.

Fig. 6 Combination treatment of 3D models using 2D SRCNN.
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numerous details, but the objective function is increased to
2.1632. Figures 9(e) and 9(f) show the high-precision and
large-scale structures calculated by HRTO, respectively.
Their filter radius is 4 because their FEA uses a coarse
mesh. The high-precision structure of HRTO is different

from the result of conventional methods. The HRTO high-
precision structure has more branches and straighter struts.
The large-scale configuration of HRTO has many detailed
features. However, due to the instability of numerical
calculations, the structure exhibits asymmetry. The

Fig. 8 High-resolution images of the barrier structure under various strategies. Results obtained by traditional methods: (a) Low-
resolution, 210�210, rmin= 4, cobj = 91.495; (b) high-precision, 840�840, rmin = 19, cobj = 97.613; (c) large-scale, 840�840, rmin = 4, cobj
= 84.179. (d) Result post-processed by SRCNN, 840�840, rmin = 4, cobj = 1.2�108. Results obtained by HRTO: (e) High-precision,
840�840, rmin = 4, cobj = 81.168; (f) large-scale, 840�840, rmin = 0.25, cobj= 83.348. rmin and cobj represent the filter radius and the
objective function, respectively.

Fig. 9 High-resolution images of the sandwich structure under various strategies. Results obtained by traditional methods: (a) Low-
resolution, 200�140, rmin = 4, cobj= 2.0214; (b) high-precision, 800�560, rmin = 19, cobj = 2.0715; (c) large-scale, 800�560, rmin = 4, cobj
= 1.9335. (d) Result post-processed by SRCNN, 800�560, rmin = 4, cobj= 2.1632. Results obtained by HRTO: (e) High-precision,
800�560, rmin = 4, cobj = 1.8352; (f) large-scale, 800�560, rmin = 0.25, cobj = 1.9201. rmin and cobj indicate the filtering radius and
objective function, respectively.
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objective function values of the HRTO high-precision and
large-scale structures are 1.8352 and 1.9201, respectively,
which are lower than the values for the corresponding
conventional schemes.
To investigate the influence of each optimization

parameter on HRTO efficiency, we selected an MBB
beam as the base model, half of which is used as an
optimization model in Fig. 10. Its Young’s modulus E
equals to 1, the load F equals to 2, and the optimization
parameters included a base resolution of 140�70, a target
volume of 0.5, a filter radius of 3, and an upscaling factor
of 4. Therefore, the output resolution would reach
560�280. Table 2 lists alternative optimization parameters
for a parametric analysis.

In accordance with Table 2, we tested the influence of
each alternative parameter on design compliance by using
the control variable method. In Fig. 11, HRTO_FEA refers
to the compliance of the coarse mesh in HRTO, and
HRTO_output is the compliance of the high-resolution
image output in each iteration. Figures 11(a)–11(d) present
the effects of each optimization parameter on design
compliance under the high-precision model. The effects of
each optimization parameter on design compliance under
the large-scale model are shown in Figs. 11(e)–11(h). The
optimization parameters indicated in Fig. 11 are the
number of elements, volume fraction, filter radius, and
upscaling factor (from top to bottom). As can be seen in
Figs. 11(a)–11(d), the FEA compliance of the HRTO high-
precision model deviates from that of the conventional
method, but this error can be corrected and optimized by
SRCNN. The objective function of HRTO’s design is
approximately 0.5% better than that of the conventional
method. Only one large deviation can be seen in Fig. 11(c)

where the filter radius rmin equals to 1. The performance of
HRTO is good under other high-precision conditions. In
contrast, the HRTO method is not good enough in large-
scale models. The error of the objective function decreases
with increasing individual optimization parameters in Figs.
11(e), 11(f), and 11(h) (except for the filter plate radius rmin
in Fig. 11(g)), but it is only reduced to around 5%. It can also
be observed in Figs. 11(a)–11(h) that the high-resolution
design sacrifices about 5% performance compared to the
low-resolution design not processed by SRCNN.
An MBB beam whose design domain shape, boundary

conditions, and load position are similar to those indicated
in Fig. 10 was selected to test the efficiency of the HRTO
method. Half of the base model size was 200�100, target
volume V * was 50%, filter radius rmin was 3, Young’s
modulus E was 1, external load F was 2, and SRCNN
upscaling factor USF was 4. We calculated large-scale and
high-precision models by using traditional and HRTO
methods. Figure 12 shows the convergence history of the
base model and the two types of high-resolution models
calculated using the conventional method and the HRTO
method. The black solid line denotes the basic model
convergence history. The high-resolution and large-scale
models of the conventional method are represented by a
dashed line and a short-dashed line, respectively. The high-
resolution and large-scale models of the HRTO method are
indicated by a dashed–dotted line and a dashed double-
dotted line, respectively. The curve in Fig. 12 represents
the compliance calculated by FEA. According to the test
results in Fig. 11, the output compliance of the HRTO
method is about 5% higher than that of FEA. Figure 12
shows that the convergence of the HRTO method is much
better than that of the conventional method. Table 3
presents some specific data on the convergence history of
Fig. 12. Table 3 shows the efficiency of conventional
methods and HRTO, and Table 4 calculates the reduction
ratio of various data between conventional methods and
HRTO. As can be seen from Table 4, HRTO is an efficient
method. For the high-precision models, because of the low
resolution of the FEA mesh and the small filter radius,
HRTO only needs to add a small amount of memory for
neural network operations, thereby reducing the initial time
(I.T.) by 99.95% and the step time (S.T.) by 86.18%. In
addition, SRCNN includes filter characteristics. Thus, the
iteration number (It.) was also reduced (about 86.64%).
The computational efficiency for the large-scale models
was also improved. I.T., S.T., and It. decreased by 98.45%,
88.80%, and 63.44%, respectively. The combination of
these improved values can reduce time and computing
costs on the side of users. The conventional method
requires a large amount of running memory in the high-
precision case, whereas the HRTO method needs only a
small amount. Comparison of the large-scale cases of the
two methods revealed that the conventional method
requires a large memory space to calculate the filter in

Fig. 10 MBB beam basic model.

Table 2 Alternative optimization parameters

Basic resolution Target volume Filter radius Upscaling factor

100�50 0.3 1 2

120�60 0.4 2 3

140�70 0.5 3 4

160�80 0.6 4 –

180�90 0.7 5 –
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Fig. 11 The influence of each optimization parameter of 2D designs on the objective. The influence of (a) number of elements,
(b) volume fraction, (c) filter radius, and (d) upscaling factor on the objective under the high-precision situation. The influence of
(e) number of elements, (f) volume fraction, (g) filter radius, (h) upscaling factor on the objective under the large-scale situation.
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the high-precision case, and much of HRTO’s memory is
devoted to neural network computation.
Table 5 lists the efficiencies of the HRTO method at

different resolutions. The design domain shape, boundary
conditions, and load position of the basic model in Table 5
are similar to those of the MBB beam in Fig. 10. In
addition to the change in resolution, the unlisted
optimization parameters (target volume of 0.5, filter radius
of 3, and upscaling factor of 4) were constants. The data in
the table show that HRTO has a stable capability to
accelerate high-precision models, and the acceleration
capability of large-scale models increases with resolution.

5.2 3D numerical examples

Figure 13 shows the computing power of the HRTO
method for the 3D models. The base resolution of the
cantilever beam was 100�20�10, volume fraction vol was
0.35, filter radius rmin was 2, and upscaling factor USF was

4. With the help of the combination treatment of 3D
models, the output resolution was increased to 16 times in
all three dimensions (i.e., 1600�320�160), and the output
designs included a total of 81920000 elements. This
example does not require strong hardware support, and it
can be implemented on a typical computer. This computer
used for this case had an Intel(R) Core (TM) i5-7500 CPU
@ 3.40 GHz and 4 GB of RAM. Only 0.57 s was required
for initialization and 651.41 s for a single step. The
conventional method is difficult to run in the same
hardware environment. Therefore, the design of the
conventional method is not shown here. Again, the high
computational efficiency of the proposed method is
highlighted.
To reveal the advantages of the HRTO method, we

compared its efficiency with that of two similar algorithms.
As shown in Table 6, the first compared method is a higher-
order multi-resolution topology optimization approach
using the voxel version of the finite cell method (FCM)
[39]. The second method is an efficient structure topology
optimization approach using the multiscale finite element
method (MsFEM) [62]. According to the two above-
mentioned previous studies, the acceleration rates of the
FCM-based method for 2D and 3D models are 2.9 and 32,
respectively. The MsFEM-based method increases the
computational efficiency of the 2D model by 17 times and
improves the calculation efficiency of the 3D model by 50
times. The proposed HRTO method can increase the
computational efficiency of the 2D large-scale model by 24
times and can achieve an acceleration rate of 54 times for
2D high-precision design. In 3D model design, the
acceleration rate of HRTO can even reach 79 times. In
addition, Table 6 indicates that the acceleration effect of
the three methods on the 3D model is greater than that on
the 2D model. The reason is that the FEA of the 3D model
is time consuming, and the FEA time is almost equivalent
to the time of each iteration. The longer FEA is, the better
the acceleration effects of the methods are. The HRTO

Table 3 MBB beam efficiency of the conventional method and HRTO method

Method Enhancement mode Output resolution I.T./s It. S.T./s Max. ram/GB

Low-resolution Basic model 200�100 0.0994 606 0.3328 0.0100

Conventional High-precision 800�400 209.4000 8174 20.0261 2.5303

Large-scale 800�400 1.6530 4231 7.5468 0.1529

HRTO High-precision 800�400 0.1138 1092 2.7686 0.1621

Large-scale 800�400 0.0256 474 2.7592 0.1621

Fig. 12 MBB beam convergence history of the conventional
method and HRTO method.

Table 4 Efficiency data reduction ratio of the conventional method and HRTO method

Enhancement mode
Reduction ratio/%

I.T. It. S.T. Max. ram

High-precision 99.95 86.64 86.18 93.59

Large-scale 98.45 88.80 63.44 –6.08
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upscaling factor for the 2Dmodel is 4. However, for the 3D
model, the upscaling factor is increased to 16 due to the
algorithm. This condition makes HRTO advantageous for
the calculation of 3D models.

6 Conclusions and remarks

This study established an efficient HRTO method using
SRCNN. Two strategies, namely, a pooling strategy for
mesh balance and a combined treatment method using 2D
SRCNN, were developed in this framework. The method
allows 3D HRTO to eliminate high computational costs.
The following conclusion were obtained from a compre-
hensive comparison.
1) In terms of resolution, the data used in this study

increased the resolutions of the 2D and 3D models from
200�100 to 800�400 and from 100�20�10 to

Table 5 Efficiencies of the HRTO method at different resolutions

Basic resolution Output resolution

Efficiency of conventional
method

Efficiency of HRTO

I.T./s S.T./s I.T./s Reduction ratio/% S.T./s Reduction ratio/%

High-precision

100�50 400�200 15.19 4.591 0.023 99.85 0.660 85.63

120�60 480�240 24.89 7.166 0.039 99.84 0.905 87.37

140�70 560�280 37.55 7.068 0.054 99.86 1.254 82.25

160�80 640�320 58.13 9.790 0.073 99.88 1.719 82.44

180�90 720�360 121.0 14.14 0.088 99.93 2.115 85.04

200�100 800�400 209.4 20.03 0.114 99.95 2.769 86.18

Large-scale

100�50 400�200 0.539 1.710 0.006 98.85 0.695 59.37

120�60 480�240 0.731 2.607 0.007 99.00 0.899 65.51

140�70 560�280 0.746 2.794 0.010 98.66 1.230 56.00

160�80 640�320 1.015 3.935 0.014 98.66 1.631 58.54

180�90 720�360 1.342 5.089 0.021 98.41 2.015 60.40

200�100 800�400 1.653 7.547 0.026 98.45 2.759 63.44

Fig. 13 Design domain and HRTO topology solution of a 3D cantilever beam.

Table 6 Comparison of acceleration ratios of three algorithms

Method
Acceleration rate

2D model 3D model

FCM-based 2.9 32

MsFEM-based 17 50

HRTO 24–54 79
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1600�320�160, respectively. The HRTO method could
make the design achieve any resolution by flexibly
combining SRCNN and pooling modules. For example,
if we were to nest three SRCNNs and their corresponding
pooling with the USF of 4 in a model with a resolution of
200�100, we would obtain a result with a resolution of
43�200�43�100. In the case without nesting, if we were
to choose any three iterative steps without performing
pooling, we would also obtain a result with a resolution of
43�200�43�100.
2) In terms of efficiency, HRTO exhibited higher

efficiency than the traditional algorithms. In the high-
precision design, the iteration number was reduced from
8174 to 1092, and the step time decreased from 20.026 to
2.7686 s. Further testing revealed that the acceleration
effect became increasingly apparent as the number of
meshes in the design domain increased.
3) In terms of versatility, HRTO benefits from the

extensive application of SRCNN, and it is more versatile
than other topology optimization methods using neural
networks. HRTO can be used for any design domain,
number of elements, arbitrary boundary conditions, and
loads. Notably, the FEA mesh, rather than the output mesh,
affects the mesh independence of HRTO.
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