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Abstract As the traditional cross-coupling control
method cannot meet the requirements for tracking
accuracy and contour control accuracy in large curvature
positions, an integrated control strategy of cross-coupling
contour error compensation based on chord error con-
straint, which consists of a cross-coupling controller and an
improved position error compensator, is proposed. To
reduce the contour error, a PI-type cross-coupling
controller is designed, with its stability being analyzed
by using the contour error transfer function. Moreover, a
feed rate regulator based on the chord error constraint is
proposed, which performs speed planning with the
maximum feed rate allowed by the large curvature position
as the constraint condition, so as to meet the requirements
of large curvature positions for the chord error. Besides, an
improved position error compensation method is further
presented by combining the feed rate regulator with the
position error compensator, which improves the tracking
accuracy via the advance compensation of tracking error.
The biaxial experimental results of non-uniform rational B-
splines curves indicate that the proposed integrated control
strategy can significantly improve the tracking and contour
control accuracy in biaxial contour following tasks.

Keywords cross-coupling controller, contour error, track-
ing error, position error compensator, feed rate regulator

1 Introduction

In biaxial motion control tasks, the great difference in the
motion characteristics of coordinate axes in the feed
system may result in low contour tracking accuracy when
simply using the single-axis servo control. Specific contour

control techniques, such as cross-coupling control (CCC)
[1,2], must be used. The basic idea of CCC is to build a
real-time contour error model based on the feedback
information and interpolation information of each coordi-
nate axis, seek and establish an optimal contour error
control law to compensate the contour error, thus reducing
and eliminating the contour error. A common cross-
coupling controller mainly consists of two parts, one is the
real-time contour error estimation model and the other is
the control and compensation strategy [3]. The contour
error is defined as the shortest normal distance from the
actual cutting position to the target reference path [4,5], as
shown in Fig. 1.
Contour error estimation methods have been the focus of

many scholars. For example, Koren and Lo [2] and Yang
and Li [6] locally approximate the free-curve profile with
an intimate circle and used McLaughlin’s expansion to
achieve a second-order estimation of the contour error.
Shih et al. [7] adopted Taylor’s second-order expansion to
estimate the contour error on the premise of close circular
approximation. Based on the traditional second-order
method of close circular approximation, Zhao et al. [3]
proposed a high-precision second-order estimation method
using the Taylor’s expansion of distance function. Chen
et al. [8] proposed several real-time parameter-based
contour error estimation algorithms, in which the backward
reference point was firstly calculated by means of the arc
length parameter-based method, and was then used as the
required command point to estimate the contour error by
using the straight-line or arc approximation method.
Based on the real-time estimation of contour error, some

researchers developed a variety of control schemes to
reduce and eliminate the contour error. For example, Koren
[1] proposed a CCC structure to compensate the contour
error in biaxial contour following tasks. To improve the
contour control accuracy of a system, Yan et al. [9]
proposed a self-correcting adaptive control strategy based
on the CCC structure and the CCC of axial motion. Based
on the adaptive control method, Chen et al. [10] proposed a
robust adaptive CCC strategy. Srinivasan and Kulkarni
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[11] and Ouyang et al. [12] combined the CCC structure
with the proportion-integration-differentiation (PID) con-
trol algorithm to improve the contour control accuracy.
Considering the limitations of the traditional CCC
structure, Shin et al. [7] proposed an improved CCC
structure for modifying the reference position command of
each coordinate axis and designed a cross-coupling
controller for contour error compensation, which can
improve the contour control accuracy of biaxial contour-
following tasks to a certain extent. Moreover, Chen et al.
[13] designed a cross-coupling position command shaping
controller for multi-axis contour following tasks based on
an improved CCC structure. All these above-mentioned
methods can be classified into CCC methods.
However, CCC methods cannot significantly reduce the

tracking error. Poor tracking performance is likely to cause
severe processing errors. To solve this problem, some
researchers proposed a variety of methods for improving
the contour following accuracy. For example, Su and
Cheng [5] proposed a position error compensator (PEC) to
improve the tracking and contour control accuracy of the
biaxial motion control system. Sun et al. [14] proposed a
new model-reference adaptive control strategy for improv-
ing the tracking performance. El Khalick and Uchiyama
[15] proposed a model predictive contouring controller to
further reduce the tracking error. Wu et al. [16] added a
feedforward controller to the general-purpose cascaded
P-PI feedback control structure to improve the tracking
accuracy. Based on the feedforward control strategy,
Cheng et al. [17] and Chen et al. [18] combined the
CCC method with the feedforward control scheme to
indirectly reduce the contour error by improving the
tracking performance of each axis. To simultaneously
reduce the tracking and contour errors, Moghadam et al.
[19] combined the robust tracking with the optimal
hierarchical control techniques. Based on the adaptive
feed rate adjusting method, Tang and Landers [20]
presented a predictive contour control strategy. Rahaman

et al. [21] combined the interpolation method, CCC
method and tracking controller, and further proposed a
new approach to realize the simultaneous compensation of
contour error and tracking error. In addition, Barton and
Alleyne [22] and Tsai et al. [23] used iterative learning
control method to decrease the tracking error and contour
error. All these above-mentioned methods can be regarded
as a combination of the CCC method and the tracking error
compensation strategy.
In summary, in most cases, CCC methods are effective

in reducing the contour error but ineffective in reducing the
tracking error and the chord error. A combination between
CCC methods and tracking error compensation strategies
can improve the tracking accuracy and the contour control
accuracy at the same time. However, in the process of
designing the CCC controllers, many researchers did not
take into account the effect of an added controller on the
stability of the biaxial servo system, nor did they consider
the requirements for the chord error in the large curvature
position of the reference path.
To solve these problems, this paper first proposes a feed

rate regulator based on the chord error constraint to meet
the requirements of the large curvature position for the
chord error. Then, based on the improved CCC structure
proposed by Shin et al. [7], a cross-coupling controller is
designed, with its stability being analyzed, so as to reduce
the contour error and improve the contour control
accuracy. Moreover, by combining the PEC proposed by
Su and Cheng [5] with the feed rate regulator, an improved
position error compensation method is proposed, which
can further reduce the tracking error and improve the
tracking accuracy while meeting the requirements of the
large curvature position for the chord error. Besides, to
achieve higher contour control accuracy, an integrated
control strategy for contour error compensation, which
consists of a cross-coupling controller and an improved
position error compensation method, is finally proposed.
The integrated control strategy proposed in this paper

Fig. 1 Schematic of tracking and contour errors.
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only needs to use the position and velocity information of
the interpolation point as well as the curvature and chord
error information of the target trajectory. This information
is available in multi-axis computer numerical control
(CNC) platform, so that we can use the methods such as the
high-precision three-axis contour error estimation algo-
rithm [24] and the five-axis contour error estimation
algorithm [25,26] to estimate the contour error of the multi-
axis CNC platform and implement the contour error
compensation of each axis. Through the proposed
integrated control strategy, the error compensation can be
distributed to each axis, so that the tracking and contour
control accuracy of the multi-axis CNC platform can be
significantly improved and the chord error requirements
can be successfully met. Thus, it is feasible to extend the
integrated control strategy proposed in this paper to multi-
axis CNC machining, which is also the focus of our future
work.

2 Feed rate regulator based on chord error
constraint

To solve the problem that the traditional CCC method
cannot meet the chord error requirement in large curvature
positions, this paper takes the non-uniform rational B-
splines (NURBS) curve as the object and proposes a feed
rate regulator based on the chord error constraint. The
regulator is combined with the CCC strategy to meet the
requirements of the large curvature position for chord error
and to reduce the contour error effectively.
The schematic of chord error is illustrated in Fig. 2,

where PðuiÞ and Pðuiþ1Þ respectively represent the ith and
ðiþ 1Þth interpolation points and are generated by the
NURBS curve interpolator [27]. In addition, ERi is defined
as the chord error, �i is the radius of curvature at the
NURBS curve u ¼ ui, and Li is the chord length for the ith
interpolation period.
From Fig. 2, the chord error can be expressed as

ERi ¼ �i –

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i

2 –
Li
2

� �2
s

: (1)

Recording the maximum chord error allowed for
machining as ERmax, which satisfies Li ¼ VmaxTs where
Vmax is the maximum interpolation speed, and Ts is the
sampling period. Then, the maximum interpolation speed
Vmax based on the chord error constraint in any period can
be calculated as

Vmax ¼
2

Ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i

2 – ð�i –ERmaxÞ2
q

¼ 2

Ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�iERmax –ER

2
max

q
: (2)

Since the curvatures in different positions of the NURBS
curve are different, the maximum feed rates allowed in
different positions are also different under the constraint of
chord error. Large chord error tends to occur in the position
with a large curvature. Based on the chord error constraint,
first, set B corresponding to all curvature maxima points is
searched in set A of the entire curve interpolation points.
Then, set C corresponding to the point at which the
allowed maximum feed rate is smaller than the initial one
(the initial feed rate is constant) is found in set B. Finally,
the quintic polynomial speed planning is performed with
the maximum allowable feed rate as a constraint.
The design process of the feed rate regulator is as

follows:
1) Traversing the whole trajectory, find all curvature

maxima points in the interpolation point set fPðu1Þ,Pðu2Þ,
:::,PðutÞg, and record this set as fPðu1Þ,Pðu2Þ, :::,PðunÞg,
where t > n.
2) Assuming that the initial feed rate is Vstart, find the

point at which the maximum feed rate Vmax based on the
chord error is smaller than the initial feed rate Vstart in the
curvature maxima point set fPðu1Þ,Pðu2Þ, :::,PðunÞg, and
record this set as fPðu1Þ,Pðu2Þ, :::,PðumÞg. The maximum
feed rate set allowed for each point is fVs1,Vs2, :::,Vsmg,
and the parameter set of the corresponding curves of each
point is fus1, us2, :::, usmg, where n > m.
3) Assuming that curve parameter u 2 ½0, 1�, then the

parameter set fus1, us2, :::, usmg divides the curve into
ðmþ1Þ intervals. The intervals respectively correspond to
½0, us1�, ½us1, us2�, :::, ½usm, 1�. Performing the speed plan-
ning with a quintic polynomial in each interval, and the
starting and ending speed of each interval corresponds to
½Vstart, Vs1�, ½Vs1, Vs2�, :::, ½Vsm, Vend�.
The schematic of the speed of each interval after the

planning is illustrated in Fig. 3.
4) According to the law of the quintic polynomial, the

function between the feed rate V ðuÞ and the curve
parameter u can be expressed as

V ðuÞ  ¼   a0 þ a1uþ a2u
2 þ a3u

3 þ a4u
4 þ a5u

5: (3)Fig. 2 Schematic of chord error.
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Thus, acceleration AðuÞ and jerk (the change rate of
acceleration) J ðuÞ can be respectively expressed as

AðuÞ ¼ a1 þ 2a2uþ 3a3u
2 þ 4a4u

3 þ 5a5u
4, (4)

J ðuÞ ¼ 2a2 þ 6a3uþ 12a4u
2 þ 20a5u

3: (5)

Within each parameter interval ½us, ue�, in order to ensure
the continuity of acceleration and jerk, boundary condi-
tions are applied to the feed rate, acceleration and jerk to
determine the coefficients of Eq. (3), which are expressed
as

a0 þ a1us þ a2us
2 þ a3us

3 þ a4us
4 þ a5us

5 ¼ vs,

a0 þ a1ue þ a2ue
2 þ a3ue

3 þ a4ue
4 þ a5ue

5 ¼ ve,

a1 þ 2a2us þ 3a3us
2 þ 4a4us

3 þ 5a5us
4 ¼ as,

a1 þ 2a2ue þ 3a3ue
2 þ 4a4ue

3 þ 5a5ue
4 ¼ ae,

2a2 þ 6a3us þ 12a4us
2 þ 20a5us

3 ¼ Js,

2a2 þ 6a3ue þ 12a4ue
2 þ 20a5ue

3 ¼ Je,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(6)

where vs, as, and Js represent the starting velocity,
acceleration and jerk of each parameter interval, respec-
tively, and ve, ae, and Je represent the end velocity,
acceleration, and jerk of each parameter interval, respec-
tively. In this paper, we set as ¼ ae ¼ Js ¼ Je ¼ 0 to
design the feed rate regulator.
Then, the feed rate at each interpolation point of the

curve is

Vi ¼ V ðuiÞ, (7)

where ui is the curve parameter corresponding to each
interpolation point.

3 Cross-coupling control strategy

CCC is the main method to improve the accuracy of biaxial
contour following tasks. In this section, a cross-coupling
controller for contour error compensation is designed
based on the improved CCC structure, with its stability
being analyzed by using the contour error transfer function
(CETF).

3.1 Design of the cross-coupling controller

The structure of the cross-coupling controller of a biaxial
servo system is illustrated in Fig. 4. In Fig. 4, Rx and Ry are
reference position commands of X- and Y-axis generated
by the NURBS curve interpolator, representing the
position information of each interpolation point; Kpx and
Kpy are the position loop feedback controllers in X- and Y-
axis of the servo system; Gvx and Gvy are the links of X-
and Y-axis, respectively, including velocity loop, current
loop, and actuator, which can be obtained by model
identification; Px and Py are the actual positions of motor
output from X- and Y-axis, which can be obtained by

Fig. 3 Schematic of speed interval.

Fig. 4 Structure of cross-coupling controller for biaxial servo system.
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sampling the signal of photoelectric encoder; Ex and Ey are
the components of current tracking error in X- and Y-axis,
respectively; Cx and Cy are the cross-coupling coefficients
in X- and Y-axis of the CCC controller; and E#c is the
contour error estimated in real-time, which can be written
as

E#c ¼ ExCx þ EyCy: (8)

From Fig. 4, the control inputs can be expressed as

Ux ¼ Rx þ UcCx, (9)

Uy ¼ Ry þ UcCy, (10)

where Uc represents the output of the estimated contour
error E#c after being acted upon by the CCC controller, and
Ux andUy are the control inputs for X- and Y-axis including
reference position commands and contour error compensa-
tions.
By inputtingUx andUy obtained in real time as reference

position instructions for each sampling period into the
biaxial servo system, the compensation of the cross-
coupling contour error can be implemented.
The position loop feedback controllers in Fig. 4 are

P-type, and the CCC controller Ccðz – 1Þ is designed as PI-
type, with a representation in the discrete domain as

Ccðz – 1Þ ¼ Kcp þ Kci
1

1 – z – 1
, (11)

where Kcp and Kci are the proportional and integral gains of
the CCC controller, respectively, and z is a complex
variable called a Z-transform operator.

3.2 Stability analysis

The cascade control structure [13] of single-axis object in a
servo system is illustrated in Fig. 5, where Kpi represents
the position proportional gain of each axis, Kvpi represents
the velocity proportional gain of each axis, Kvvi represents
the velocity integral gain of each axis, Gpiðz – 1Þ represents

a discrete model of single-axis object of the servo system,
Gvi represents the link including the velocity loop and the
integrator (shown by the dotted line in Fig. 5), and i ¼ x
and y.
To better analyze the stability of the servo control

system, the biaxial motion control system without CCC
strategy (abbreviated as the uncoupled system) is equiva-
lent to the form shown in Fig. 6, and the corresponding
terms are listed in Table 1.
From Fig. 6, the transfer function matrix between the

reference input and the actual output can be derived as

T ¼ KpGvðI þ KpGvÞ – 1: (12)

Thus, the tracking error can be expressed as

E ¼ R –P ¼ ðI –TÞR ¼ ðI –KpGvðI þ KpGvÞ – 1ÞR:
(13)

Define the contour error (εu) of the uncoupled system as

εu ¼ CT⋅E ¼ CT⋅ðI –KpGvðI þ KpGvÞ – 1ÞR: (14)

The cross-coupling position command shaping control-
ler CTCcC couples the two axes together and the controller
forms extra loops for modifying the reference position
command for each axis. The coupled motion control
system can be equivalent to the form shown in Fig. 7.
It can be seen from Fig. 7 that the control input of the

coupled system is the sum of the target command position
and the contour error compensations, so that the modified
target command position can be expressed as

U ¼ Rþ CCcεc: (15)

Then, the following equations can be easily obtained
from Fig. 7:

P ¼ U⋅T ¼ ðI þ T⋅CCcC
TÞ – 1⋅ðT þ T⋅CCcC

TÞR,
(16)

E ¼ R –P ¼ ðI þ T⋅CCcC
TÞ – 1⋅ðI –TÞR: (17)

Fig. 5 Cascade control structure of single-axis object in a servo system.

Tie ZHANG et al. Integrated control strategy for contour error compensation 649



Similarly, the contour error (εc) of the coupled system
can be defined as

εc ¼ CT⋅E ¼ CT⋅ðI þ T⋅CCcC
TÞ – 1⋅ðI –TÞR

        ¼ CT⋅ðI þ KpGvðI þ KpGvÞ – 1⋅CCcC
TÞ – 1

⋅ðI –KpGvðI þ KpGvÞ – 1ÞR: (18)

According to the matrix inversion formulas applied in
Ref. [13], we can transform Eq. (18) into Eq. (19), i.e.,

εc ¼ ð1þ CTKpGvðI þ KpGvÞ – 1CcCÞ – 1⋅CT

⋅ðI –KpGvðI þ KpGvÞ – 1ÞR: (19)

Comparing Eqs. (14) and (19), the relationship between

the contour error of the coupled and the uncoupled system
can be expressed as

εc ¼ ð1þ CTKpGvðI þ KpGvÞ – 1CcCÞ – 1εu: (20)

Furthermore, we can express Eq. (20) into the form of
Eq. (21), that is,

εc ¼
1

1  þ   PCc
εu, (21)

where
1

1þ PCc
is defined as the CETF [28], and satisfies

P ¼ CTKpGvðI þ KpGvÞ – 1C: (22)

Due to the gain parameters Kcp and Kci of the cross-
coupling controller will not change in the process of
tracking a target trajectory, the coupled system can be
treated as a time-invariant system and the relevant theories
of the CETF can be used for stability analysis. Since the
controllers of the position and velocity loops of each axis
use the same gain, we may consider that the two axes have
almost matched dynamics. Then, the equivalent link of
position proportional gain of each axis can be expressed as
Kequ, and the equivalent link of velocity loop and integrator
of each axis can be expressed as Gequ, i.e.,

Kpx ¼ Kpy ¼ Kequ, (23)

Gvx ¼ Gvy ¼ Gequ: (24)

According to the third-order contour error estimation
method described in Ref. [24], the contour error of the free
path can be expressed as

E#c ¼ rapðs0, δsÞ –P, (25)

where E#c is defined as the estimated contour error, rap is
the approximated desired contour, δs is defined as δs ¼
s – s0 and s is the arc length parameter, while s0 is the arc
length parameter corresponding to the target command
position, and P is the actual cutting position corresponding
to the target command position.
According to the geometric relationship among the

target command position R, the actual cutting position P
and the point rapðs0, δsÞ on the approximated desired
contour obtained by analytical solution, we can rewrite
Eq. (25) in the form of Eq. (8). In Eq. (8), Ex and Ey are
respectively the components of current tracking error in X-
and Y-axis, and satisfy

Ex ¼ Rx –Px, (26)

Ey ¼ Ry –Py: (27)

To facilitate the stability analysis of the cross-coupling
controller using the CETF, we can approximate CT⋅C in

Fig. 6 Uncoupled motion control system.

Table 1 Corresponding terms in the block diagram

Corresponding term Definition

R ¼ ½Rx    Ry�T Target command position

P ¼ ½Px    Py�T Actual cutting position

U ¼ ½Ux   Uy�T Modified target command position

E ¼ ½Ex    Ey�T Tracking error

Kp ¼ diagfKpx    Kpyg Position loop feedback controller

Gv ¼ diagfGvx   Gvyg Equivalent link including velocity loop and integrator

C ¼ ½Cx    Cy�T Cross-coupling coefficients of CCC controller

Fig. 7 Coupled motion control system.
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Eq. (22) to 1. Thus, Eq. (22) can be simplified into

P ¼ KequGequ

1þ KequGequ
: (28)

Therefore, the complex relationship between the
coupled and the uncoupled systems could be simplified
as a single input-single output problem shown in Fig. 8.
According to the rule of cascade control, once the
controllers of velocity loop in Fig. 5 are tuned appro-
priately (i.e., the bandwidth of velocity loop is at least three
times larger than that of the position loop, and the step
response behaves no oscillation), the velocity loop can be
simplified as a unit gain [7].

At this time, according to Eq. (24) and Fig. 5, Gequ can

be written as Gequ ¼
Ts

1 – z – 1
. Then, according to Eq. (28),

Pðz – 1Þ can be expressed as

Pðz – 1Þ  ¼  
KequTs

ð1þ KequTsÞ – z – 1
: (29)

As described in Ref. [7], the system is stable when the
biaxial motion control system satisfies the following
conditions: Condition 1: The individual axial tracking
system is stable; Condition 2: CETF is stable. Since the
single-axis object of the servo system is a single input-
single output system with cascade control, the actual
output can track the reference input well. Therefore,
Condition 1 is satisfied. While for Condition 2, according
to Eqs. (11), (21), and (29), the characteristic equation of
the CETF can be written as

DðzÞ ¼ z2 –
2þ KequTs þ KequTsKcp

1þ KequTs þ KequTsKcp þ KequTsKci
z

þ 1

1þ KequTs þ KequTsKcp þ KequTsKci
¼ 0: (30)

By making a z–ω transformation of Eq. (30) and letting

z ¼ ωþ 1

ω – 1
, the characteristic equation of theω-domain can

be expressed as

DðωÞ ¼ ðaþ bþ 1Þω2 þ ð2a – 2Þωþ ða – bþ 1Þ
¼ 0, (31)

where a ¼ 1þ KequTs þ KequTsKcp þ KequTsKci, and b ¼
– ð2þ KequTs þ KequTsKcpÞ.
Then, by writing the Routh table according to Eq. (31)

and using the Routh stability criterion, the ranges of gains
Kcp and Kci of the cross-coupling controller satisfying the
conditions can be expressed as

Kcp þ Kci   >  – 1, (32)

Kci   >  0, (33)

2Kcp þ Kci   > 
– 4 – 2KequTs

KequTs
: (34)

4 Integrated motion control scheme

Since the target trajectory of a biaxial contour following
task is often a free curve with variable curvatures, it is
necessary to meet the chord error requirement in high-
precision cases. To meet the requirement of chord error and
further improve the tracking and contour control accuracy
of the biaxial motion control system, an integrated control
strategy with cross-coupling contour error compensation,
which consists of a cross-coupling controller and an
improved PEC, is proposed. In this strategy, a PI-type
cross-coupling controller is designed to reduce the contour
error, based on which an improved PEC is proposed to
utilize real-time estimated contour error information and
the speed being planned by the feed rate regulator to
calculate the tracking error compensation margin. The
compensation margin is taken as part of the system control
input, so that the tracking error can be compensated in
advance.

4.1 Improved position error compensation strategy

Since CCC methods cannot significantly reduce the
tracking error, and poor tracking performance is likely to
cause serious processing errors, here we combine the PEC
proposed in Ref. [5] with the feed rate regulator proposed
in Section 2 to further propose an improved position error
compensation method. The principle of the improved
compensator is shown in Fig. 9.
The design process of the improved PEC is as follows:
1) Firstly, a feed rate regulator based on chord error

constraint is used to plan the speed so that the two axes can
move according to the designed speed law.
2) Next, the moving coordinate system XPY is estab-

lished with the actual cutting position as the origin.
Assuming that each contour error can be eliminated in one
sampling period when the CCC structure is used, there
obtains the compensation speed V c along the contour error
direction as

Fig. 8 Equivalent system of the contour error transfer function
(CETF).
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V c ¼
E#c
Ts

¼ Vcxi þ Vcyj, (35)

where E#c is the contour error vector, Ts is the sampling
period, and V cx and V cy are the components of the
compensation speed V c in X- and Y-axis, respectively.
3) Then, the feed rate V t at the current moment at Point

P can be expressed as

V t ¼ VPxi þ VPyj, (36)

where VPx and VPy are the components of the feed rate at
Point P in X- and Y-axis, respectively.
4) According to the compensation speed V c and the

feed rate V t at the current time, the composite speed VP at
Point P can be calculated as

VP ¼ V t þ V c ¼ ðVPx þ VcxÞi þ ðVPy þ VcyÞj: (37)

5) According to the composite speed VP, the position
P# after the moving for one sampling period can be
calculated, and the corresponding position vector can be
expressed as

P# ¼ ðVPx þ VcxÞTsi þ ðVPy þ VcyÞTsj: (38)

6) Representing the position vector of the target
command position R in the XPY coordinate system as

R ¼ Exi þ Eyj, (39)

where Ex and Ey are respectively the components of current
tracking error in X- and Y-axis, and can be obtained by Eqs.
(26) and (27).
Thus, the distance vector between P# and R can be

expressed as

P#R ¼ ½Ex – ðVPx þ VcxÞTs�i þ ½Ey – ðVPy þ VcyÞTs�j:
(40)

7) According to Eq. (40), the position error compensa-

tion amount along X- and Y-axis can be respectively
expressed as Pecx and Pecy, i.e.,

Pecx ¼ Ex – ðVPx þ VcxÞTs, (41)

Pecy ¼ Ey – ðVPy þ VcyÞTs: (42)

Finally, the calculated position error compensation
corresponding to each sampling period is input into the
two-axis servo system with certain proportional gains, thus
realizing the advance compensation of tracking error.

4.2 Integrated motion control structure

The integrated control strategy for contour error compen-
sation consists of a cross-coupling controller and an
improved PEC. The overall structure of the integrated
motion control is shown in Fig. 10. Different from that
shown in Fig. 5, in Fig. 10, two modules of PEC and feed
rate regulator are added and combined to form an improved
PEC (as shown by the dashed box in Fig. 10).
In Fig. 10, Pecx and Pecy represent the position error

compensations along X- and Y-axis, respectively, which
can be obtained by Eqs. (41) and (42); Kpcx and Kpcy are
gain coefficients corresponding to Pecx and Pecy of X- and
Y-axis, respectively; and F is the feed rate. It can be seen
from Fig. 10 that the cross-coupling controller and the
improved PEC work together to change the control input of
the system. At this time, based on Eqs. (9) and (10), a
position error compensation term is added, and the output
control law of the biaxial motion control system can be
expressed as

Ux ¼ Rx þ PecxKpcx þ UcCx, (43)

Uy ¼ Ry þ PecyKpcy þ UcCy: (44)

The system’s control input is updated in every sampling
period. By inputting Ux and Uy obtained in real time as the
reference position command of the current time into the
two-axis servo system, the simultaneous compensation of
contour error and tracking error can be realized.

5 Experimental setup and results

5.1 Experimental setup

To demonstrate the effectiveness of the proposed inte-
grated control strategy, some experiments were performed
on a biaxial motion control system shown in Fig. 11. The
test objects are Delta ASDA A2-E series high-order AC
servo driver and ECMA series motor, the NURBS
interpolation is implemented in the computer, and the
actual position of each axis is obtained by sampling the
photoelectric encoder signal of the motor. Then, according

Fig. 9 Schematic of the improved position error compensator.
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to the actual tracking curve and the ideal contour curve, the
contour error can be calculated by using the real-time
estimation algorithm of the contour error. The calculation
and compensation of the real-time contour error are
programmed on Kithara software, and the IPC sends the
compensations to the servo unit via the EtherCAT bus. The
system control cycle is set as Ts ¼ 1 ms. In addition, the
X‒Y workbench consists of two ball screws (20 and
10 mm/r, respectively), and each ball screw is equipped
with a grating with a resolution of 1 mm. The gain constants

used in the experiment are: Kpx ¼ 35, Kpy ¼ 35,
Kcp ¼ 2:0, Kci ¼ 0:001, Kpcx ¼ 1:0, and Kpcy ¼ 1:0. The
maximum allowable chord error is set as 0.001 mm.

5.2 Experimental results

Multiple groups of comparison experiments were per-
formed for two different target trajectories respectively
named “star curve” (as shown in Fig. 12(a)) and “free
curve” (as shown in Fig. 12(b)). For the “star curve”, the

Fig. 10 Integrated motion control structure.

Fig. 11 Biaxial motion control system.
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minimum radius of curvature is 3.5 mm, and for the “free
curve”, the minimum radius of curvature is 0.5 mm. The
reference position commands for both trajectories are
generated by the NURBS curve interpolator, and the curve
parameters are listed in Table 2. For the “star curve”, the
order is k ¼ 2 and the knot vector is (0, 0, 0, 1/9, 2/9, 3/9,
4/9, 5/9, 6/9, 7/9, 8/9, 1, 1, 1). For the “free curve”, the
order is k ¼ 3 and the knot vector is (0, 0, 0, 0,
0.0776395399490, 0.1853424960819, 0.2923660845951,
0.4098664482764, 0.5360574750026, 0.6509686913241,
0.7809426259331, 1, 1, 1, 1). The comparison schemes of
the experiments are as follows: 1) Comparing the
experimental results of three position-loop control schemes
under constant feed rate condition; 2) comparing the
experimental results of the CCC+ PEC control scheme
and the integrated control strategy. Note that the parameter
u in Figs. 13–17 of the experimental results refers to the
parameter of the NURBS curve, which has been described
in Section 2.

5.2.1 Analysis of contour following experimental results
under constant feed rate

In this experiment, each contour following task was
completed and tested using three position loop control
schemes, namely without contour error compensation (i.e.,
none CCC method), compensating for contour error using
a PI-type cross-coupling controller (i.e., CCC method) and
a PEC based on CCC (i.e., CCC+ PEC method).

5.2.1.1 Analysis of the experimental results for the “star
curve”

The contour and tracking errors of the “star curve” are
shown in Fig. 13. The contour following task is completed
under the condition of constant feed rate (200 mm/s).
Figures 13(a)–13(c) respectively show the absolute con-
tour errors estimated in real time using the three above-
mentioned control schemes. Figures 13(d) and 13(e) show

Fig. 12 Reference paths in the contour following tasks: Reference path of (a) the “star curve” and (b) the “free curve”.

Table 2 Parameters of the “star curve” and the “free curve”

Vertex number
Parameters of the “star curve” Parameters of the “free curve”

Control point coordinate/mm Weight Control point coordinate/mm Weight

1 (0, 0) 1.0 (0, 0) 1.0

2 (48, 24) 1.0 (–4.99420, –3.24613) 1.0

3 (40, 100) 1.0 (–16.91645, –10.99536) 1.0

4 (96, 32) 1.0 (20.95161, –18.41546) 1.0

5 (144, 40) 0.7 (–24.97704, –23.46105) 1.0

6 (108, 0) 1.0 (23.20926, –38.53194) 1.0

7 (144, –40) 0.7 (–30.24880, –42.11590) 1.0

8 (96, –32) 1.0 (18.47811, –53.82904) 1.0

9 (40, –100) 1.0 (–37.67975, –64.20412) 1.0

10 (48, –24) 1.0 (–3.54279, –69.02725) 1.0

11 (0, 0) 1.0 (17.88210, –72.05432) 1.0
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the experimental results of tracking error respectively in X-
and Y-axis obtained by the three control schemes, and
Fig. 13(f) shows the experimental results of the tracking
error in X‒Y workbench obtained by the three control
schemes. From the experimental results shown in Table 3,
it can be seen that, as compared with the case without
CCC, CCC scheme helps to reduce the root mean square
contour error by 34.8%, while the root mean square
tracking error hardly changes. Moreover, it is found that
CCC+ PEC scheme helps to reduce the root mean square
contour error by 67.2%, with the root mean square tracking
error being also reduced by 44.2%.

5.2.1.2 Analysis of the experimental results for the “free
curve”

The contour and tracking errors of the “free curve” are

shown in Fig. 14 and the contour following task is
completed under the condition of constant feed rate
(100 mm/s). Figures 14(a)–14(c) respectively show the
absolute contour errors estimated in real time using the
three above-mentioned control schemes. Figures 14(d) and
14(e) show the experimental results of tracking error
respectively in X- and Y-axis obtained by the three control
schemes, and Fig. 14(f) shows the experimental results of
the tracking error in X‒Y workbench obtained by the three
control schemes. From the experimental results shown in
Table 3, it can be seen that, as compared with the case
without CCC, CCC scheme helps to reduce the root mean
square contour error by 44.0%, while the root mean square
tracking error hardly changes. Moreover, it is found that
CCC+ PEC scheme helps to reduce the root mean square
contour error by 65.4%, with the root mean square tracking
error being also reduced by 42.6%.

Fig. 13 Comparison of the experimental results of contour and tracking errors for the “star curve”: Contour error (a) without CCC,
(b) with CCC, and (c) with CCC+ PEC; tracking error in (d) X- and (e) Y-axis, respectively, and (f) X‒Y workbench.

Table 3 Experimental results obtained by the three control schemes under constant feed rate

Experimental subject Experimental condition

Performance index of
tracking error/mm

Performance index of
contour error/mm

kMkmax RMS kMkmax RMS

“Star curve” (with constant feed
rate: 200 mm/s)

None CCC 4109.50 3913.40 2329.70 642.43

CCC 4205.70 3822.30 2139.10 419.07

CCC+ PEC 2496.70 2184.80 828.72 210.96

“Free curve” (with constant feed
rate: 100 mm/s)

None CCC 2227.10 1866.80 1572.20 414.34

CCC 2188.90 1831.80 1163.20 231.94

CCC+ PEC 1383.40 1070.80 662.51 143.48

Note: kMkmax represents the maximum error, and RMS represents the root mean square error.
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5.2.2 Analysis of the experiment results of contour
following obtained by the integrated control strategy

To verify the effectiveness of the proposed integrated
control strategy, the experimental results obtained by the
CCC+ PEC control scheme are compared with those of
the contour error test obtained by the integrated control
strategy. Figures 15(a) and 15(b) show the experimental
results of real-time estimated absolute contour error
obtained by two control schemes respectively for the
“star curve” and the “free curve”, and the corresponding
performance indexes of contour error are listed in Table 4.
Figures 16(a) and 16(b) show the variation laws of feed

rate, acceleration and jerk after the planning for the “star
curve” and the “free curve”, respectively. Figures 17(a) and
17(b) show the distribution curves of chord errors for the
“star curve” and the “free curve”, respectively. It can be
seen from Fig. 17 that the chord errors of the two target
trajectories are within the range of the maximum allowed
chord error. The experimental results listed in Table 4
indicate that, with the adoption of the integrated control
strategy for the “star curve”, the maximum value of the
contour error reduces by 24.0%, as compared with that
obtained by the CCC+ PEC control scheme, and the root
mean square contour error reduces by 17.1%. Moreover,
for the “free curve” adopting the integrated control

Fig. 14 Comparison of the experimental results of contour and tracking errors for the “free curve”: Contour error (a) without CCC,
(b) with CCC, and (c) with CCC+ PEC; tracking error in (d) X-, and (e) Y-axis, respectively, and (f) X‒Y workbench.

Fig. 15 Comparison of contour error results for (a) the “star curve” and (b) the “free curve”.
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strategy, the maximum value of the contour error reduces
by 38.4%, as compared with that obtained by the CCC+
PEC control scheme, and the root mean square contour
error reduces by 23.6%. All these mean that the proposed
integrated control strategy not only satisfies the require-
ments for the chord error in the machining process, ensures
the continuity of acceleration and jerk, but also further
reduces the contour error in large curvature positions (as
shown by the dashed box in Fig. 15) with the help of the
CCC+ PEC control scheme.

6 Conclusions

1) To solve the problem that the traditional CCC
method cannot meet the chord error requirement in large
curvature positions, a feed rate regulator based on the
chord error constraint is proposed.
2) Based on the improved CCC structure, a PI-type

cross-coupling controller is designed, with its stability
being analyzed by using the CETF.
3) An integrated control strategy for cross-coupling

Fig. 16 Variation laws of feed rate, acceleration and jerk after the planning: Variation laws for (a) the “star curve” and (b) the “free
curve”.

Fig. 17 Distribution curves of chord errors for (a) the “star curve” and (b) the “free curve”.

Table 4 Performance indexes of contour error obtained by the CCC+ PEC control scheme and the integrated control strategy

Experimental condition

Performance index of contour error
for the “star curve”/mm

Performance index of contour error
for the “free curve”/mm

kMkmax RMS kMkmax RMS

CCC+ PEC control scheme 828.72 210.96 662.51 143.38

Integrated control strategy 629.72 174.88 408.35 109.58
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contour error compensation based on chord error constraint
is also proposed, which consists of a cross-coupling
controller and an improved PEC.
4) Biaxial contour control experiments were carried out

using NURBS curves. The results show that the CCC+
PEC control scheme improves the tracking accuracy and
contour control accuracy of the curve at the same time, and
that the proposed integrated control strategy helps to obtain
higher contour control accuracy than the CCC+ PEC
control scheme.
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